GB/T 307 consists of the following four parts:
——GB/T 307.1 Rolling bearings - Radial bearings - Geometrical product specifications (GPS) and tolerance values;
——GB/T 307.2 Rolling bearings - Measuring and gauging principles and methods;
——GB/T 307.3 Rolling bearings - General technical regulations;
——GB/T 307.4 Rolling bearings - Thrust bearings - Geometrical product specifications (GPS) and tolerance values
This is Part 1 of GB/T 307.
This part is developed in accordance with the rules given in GB/T 1.1-2009.
This part replaces GB/T 307.1-2005 Rolling bearings - Radial bearings - Tolerance and the following main technical changes are made with respect to GB/T 307.1-2005:
——The standard name is modified (see cover and front page; cover and front page of Edition 2005);
——The symbol meaning and expression methods are modified (see Clause 4; Clause 4 of Edition 2005);
——Drawing indications are added (see Figures 1~17);
——The tolerance values of SD and SD1 are modified (see Tables 7, 9, 11, 17, 20 and 23; Tables 6, 8, 10, 16, 19 and 22 of Edition 2005);
——Four annexes and the Bibliography are added (see Annexes A to D and Bibliography).
This part, by means of translation, is identical to ISO 492:2014 Rolling bearings - Radial bearings - Geometrical product specifications (GPS) and tolerance values.
The Chinese documents identical to the normative international documents given in this part are as follows:
——GB/T 273.3-2015 Rolling bearings - Boundary dimensions, general plan - Part 3: Radial bearings (ISO 15:2011, IDT)
——GB/T 274-2000 Rolling bearings - Chamfer dimension - Maximum values (idt ISO 582:1995)
——GB/T 1182-2008 Geometrical product specifications (GPS) - Geometrical tolerances of form orientation location and run-out (ISO 1101: 2004, IDT)
——GB/T 6930-2002 Rolling bearings - Vocabulary (ISO 5593: 1997, IDT)
This part was proposed by the China Machinery Industry Federation.
This part is under the jurisdiction of the National Technical Committee on Rolling Bearing of Standardization Administration of China (SAT/TC 98).
The previous editions of this part are as follows:
——GB 307-1964 (Part) and GB 307-1977 (Part);
——GB 307.1-1984 (Part) and GB 7812-1987;
——GB/T 307.1-1994 and GB/T 307.1-2005.?
Introduction
This part is a machine element geometry standard as defined in the geometrical product specification (GPS) system as presented in master plan of ISO/TR 14638 [12].
The fundamental rules of ISO/GPS given in ISO 8015 [8] apply to this part and the default decision rules given in ISO 14253-1 [10] apply to the specifications made in accordance with this part, unless otherwise indicated.
The connection between functional requirements, measuring technique and measuring uncertainty is always intended to be considered. The traditionally used measuring technique is described in ISO 1132-2 [5]. For measurement uncertainty, it is intended that ISO 14253-2 [11] shall be considered.
Rolling bearings - Radial bearings - Geometrical product specifications (GPS) and tolerance values
1 Scope
This part of GB/T 307 specifies dimensional and geometrical characteristics, limit deviations from nominal sizes, and tolerance values to define the interface (except chamfers) of radial rolling bearings. Nominal boundary dimensions are defined in ISO 15, ISO 355 [2] and ISO 8443 [7].
This part does not apply to certain radial bearings of particular types (e.g. needle roller bearings) or for particular fields of application (e.g. airframe bearings and instrument precision bearings). Tolerances for such bearings are given in the relevant standards.
Chamfer dimension limits are given in ISO 582.
2 Normative references
The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.
ISO 15 Rolling bearings - Radial bearings - Boundary dimensions, general plan
ISO 582 Rolling bearings - Chamfer dimensions - Maximum values
ISO 1101 Geometrical product specifications (GPS) - Geometrical tolerancing - Tolerances of form, orientation, location and run-out
ISO 5593 Rolling bearings - Vocabulary
ISO 14405-1 Geometrical product specifications (GPS) - Dimensional tolerancing – Part 1: Linear sizes
ISO/TS 17863 Geometrical product specification (GPS) - Geometrical tolerancing of moveable assemblies
3 Terms and definitions
For the purposes of this document, the terms and definitions given in ISO 1101, ISO 5593, ISO 14405-1, and ISO/TS 17863 apply.
?
4 Symbols
To express that the ISO/GPS system, ISO 8015 [8], is applied, the dimensional and geometrical characteristics shall be included in the technical product documentation (for example, on the drawing). The dimensional and geometrical specifications, associated to these characteristics are described in Table 1 and Figures 1 to 17.
Descriptions for symbols are in accordance with GPS terminology; relationships with traditional terms are described in Annex A.
A tolerance value associated to a characteristic is symbolised by t followed by the symbol for the characteristic, for example tVBs.
In this part, the ISO default specification operator for size is in accordance with ISO 14405-1, i.e. the two-point size is valid. Some specification modifiers are described in Annex D.
The detailed definitions for terms in ISO 1101 and ISO 14405-1 and traditional terms in ISO 1132-1 [4] are not fully equal. For differences, see Annex C.
Table 1 Symbols for nominal sizes, characteristics, and specification modifiers
Symbol for nominal dimension (size and distance)a Symbol for characteristica GPS symbol and specification modifierb,c Descriptiond See Figure
B Nominal inner ring width 1; 2; 12
VBS Symmetrical rings: range of two-point sizes of inner ring width 1; 12
Asymmetrical rings: range of minimum circumscribed sizes of inner ring width, between two opposite lines, obtained from any longitudinal section which includes the inner ring bore axis 2; 7
ΔBS Symmetrical rings: deviation of a two-point size of inner ring width from its nominal size 1; 12
Asymmetrical rings, upper limit: deviation of a minimum circumscribed size of inner ring width, between two opposite lines, in any longitudinal section which includes the inner ring bore axis, from its nominal size 2; 7
Asymmetrical rings, lower limit: deviation of a two-point size of inner ring width from its nominal size
C Nominal outer ring width 1; 7; 12
VCS Symmetrical rings: range of two-point sizes of outer ring width 1; 7
Asymmetrical rings: range of minimum circumscribed sizes of outer ring width between two opposite lines, obtained from any longitudinal section which includes the outer ring outside surface axis 2; 12
ΔCS Symmetrical rings: deviation of a two-point size of outer ring width from its nominal size 1; 7
Asymmetrical rings, upper limit: deviation of a minimum circumscribed size of outer ring width, between two opposite lines, in any longitudinal section which includes the outer ring outside surface axis, from its nominal size 2; 12
Asymmetrical rings, lower limit: deviation of a two-point size of outer ring width from its nominal size
C1 Nominal outer ring flange width 12
VC1S Range of two-point sizes of outer ring flange width 12
ΔC1S Deviation of a two-point size of outer ring flange width from its nominal size 12
d Nominal bore diameter of a cylindrical bore or at the theoretical small end of a tapered bore 1~7; 12~16
Vdmp Range of mid-range sizes (out of two-point sizes) of bore diameter obtained from any cross-section of a cylindrical bore 1; 2; 12
Δdmp Cylindrical bore: deviation of a mid-range size (out of two-point sizes) of bore diameter in any cross-section from its nominal size 1; 2; 12
Tapered bore: deviation of a mid-range size (out of two-point sizes) of bore diameter at the theoretical small end from its nominal size 7
Vdsp Range of two-point sizes of bore diameter in any cross-section of a cylindrical or tapered 1; 2; 7,12
Δds Deviation of a two-point size of bore diameter of a cylindrical bore from its nominal size 1; 2; 12
d1 Nominal diameter at the theoretical large end of a tapered bore 7
Δd1mp Deviation of a mid-range size (out of two-point sizes) of bore diameter at the theoretical large end of a tapered bore from its
nominal size 7
D Nominal outside diameter 1~16
VDmp Range of mid-range sizes (out of two-point sizes) of outside diameter obtained from any cross-section 1; 2; 7,12
ΔDmp Deviation of a mid-range size (out of two-point sizes) of outside diameter in any cross- section from its nominal size 1; 2; 7,12
VDsp Range of two-point sizes of outside diameter in any cross-section 1; 2; 7,12
ΔDs Deviation of a two-point size of outside diameter from its nominal size 1; 2; 7,12
D1 Nominal outside diameter of outer ring flange 12
ΔD1s Deviation of a two-point size of outside diameter of outer ring flange from its nominal size 12
Kea Circular radial run-out of outer ring outside surface of assembled bearing with respect to datum, i.e. axis, established from the inner ring bore surface 4; 5; 6; 9; 10; 11; 14;15; 16
Kia Circular radial run-out of inner ring bore surface of assembled bearing with respect to datum, i.e. axis, established from the outer ring outside surface 4; 5; 6; 9; 10; 11; 14; 15; 16
Sd Circular axial run-out of inner ring face with respect to datum, i.e. axis, established from the inner ring bore surface 3; 8; 13
SD Perpendicularity of outer ring outside surface axis with respect to datum established from the outer ring face 3; 8
SD1 Perpendicularity of outer ring outside surface axis with respect to datum established from the outer ring flange back face 13
Sea Circular axial run-out of outer ring face of assembled bearing with respect to datum, i.e. axis, established from the inner ring bore surface 5; 6; 10; 11
Seal Circular axial run-out of outer ring flange back face of assembled bearing with respect to datum, i.e. axis, established from the inner ring bore surface 15; 16
Sia Circular axial run-out of inner ring face of assembled bearing with respect to datum, i.e. axis, established from the outer ring outside surface 5; 6; 10; 11; 15; 16
SLh Taper slope is the difference between nominal diameters at the theoretical large end and small end of a tapered bore (d1-d) 7
ΔSL Deviation of taper slope of a tapered inner ring bore from its nominal size 7
T Nominal assembled bearing width 17
ΔTs Deviation of minimum circumscribed size of assembled bearing width from its nominal size 17
T1 Nominal effective width of inner subunit assembled with a master outer ring 17
ΔT1s Deviation of minimum circumscribed size of effective width (inner subunit assembled with a master outer ring) from its nominal size 17
T2 Nominal effective width of outer ring assembled with a master inner subunit 17
ΔT2s Deviation of minimum circumscribed size of effective width (outer ring assembled with a master inner subunit) from its nominal size 17
TF Nominal assembled flanged bearing width 17
ΔTFs Deviation of minimum circumscribed size of assembled flanged bearing width from its nominal size 17
TF2 Nominal effective width of flanged outer ring assembled with a master inner subunit 17
ΔTF2s Deviation of minimum circumscribed size of effective width (flanged outer ring assembled with a master inner subunit) from its nominal size 17
α Frustum angle of tapered inner ring bore 7; 8; 9; 10; 11
αk Distance from face to define the restricted area for SD or SD1 3; 8; 13
a Symbols as defined in ISO 15241[14] except for the format used.
b Symbols as defined in ISO 1101 and ISO 14405-1.
c Specification modifier shall not be indicated on a drawing, if the two-point size is applied for both specified limits.
d Description based on ISO 1101, ISO 5459 [7] and ISO 14405-1.
e Specification modifier is not appropriate in cases where no opposite material is existing, e.g. tapered roller bearing outer ring with large back face chamfer and small front face. Solutions need to be developed within the framework of the GPS system and considered in future revisions of this part.
f Specification modifier can be omitted on the drawing.
g Symbols for direction of gravity , fixed parts and movable parts according to ISO/TS 17863; see Figures 4, 5, 6, 9, 10, 11, 14, 15, 16, and 17.
h SL is a distance.
i Description based on ISO 1119.[3]
k For rsmin ≤ 0.6: a=rsmax,axial+0.5; for rsmin>0.6: a=1.2×rsmax,axial; rsmax,axial, see ISO 582. For definitions of rsmin and rsmax,axial, see ISO 582.
The indications in Figures 1 to 17 illustrate the correlation of interface dimensions and corresponding dimensional and geometrical tolerance symbols.
The specifications for single components are illustrated in Figures 1, 2, 3, 7, 8, 12 and 13. The specifications for assembled components are illustrated in Figures 4, 5, 6, 9, 10, 11, 14, 15, 16, and 17.
Note: Figures 1 to 17 are drawn schematically and do not necessarily show all design details.
Two examples of a real drawing indication are given in Annex B.
Figure 1 Size specification for single components for bearing with cylindrical bore and symmetrical rings
Note: tVBs and tVCs are not relevant for tapered roller bearings.
Figure 2 Size specification for single components for bearing with cylindrical bore and asymmetrical rings
?
Figure 3 Geometrical tolerances for single components for bearing with cylindrical bore
Figure 4 Geometrical tolerances for assembled bearing with cylindrical bore - Cylindrical roller bearing, spherical roller bearing, toroidal roller bearing and self?aligning ball bearing
Figure 5 Geometrical tolerances for assembled bearing with cylindrical bore - Deep-groove ball bearing, double?row deep?groove ball bearing, double?row angular contact ball bearing and four-point-contact ball bearing
Figure 6 Geometrical tolerances for assembled bearing with cylindrical bore - Single-row angular contact ball bearing and tapered roller bearing
Note: For indications on asymmetrical outer rings, see Figure 2.
Figure 7 Size specification for single components for bearing with tapered bore
Figure 8 Geometrical tolerances for single components for bearing with tapered bore
Figure 9 Geometrical tolerances for assembled bearing with tapered bore - Cylindrical roller bearing, spherical roller bearing, toroidal roller bearing and self?aligning ball bearing
Figure 10 Geometrical tolerances for assembled bearing with tapered bore - Deep-groove ball bearing, double?row deep?groove ball bearing, double?row angular contact ball bearing and four-point-contact ball bearing
Figure 11 Geometrical tolerances for assembled bearing with tapered bore - Single-row angular contact ball bearing and tapered roller bearing
Note: See Figure 2 for indications on asymmetrical inner ring.
Figure 12 Size specification for single components for bearing with flanged outer ring
Figure 13 Geometrical tolerances for single components for bearing with flanged outer ring
Figure 14 Geometrical tolerances for assembled bearing with flanged outer ring - Cylindrical roller bearing, spherical roller bearing, toroidal roller bearing and self?aligning ball bearing
Figure 15 Geometrical tolerances for assembled bearing with flanged outer ring - Deep-groove ball bearing, double?row deep?groove ball bearing, double?row angular contact ball bearing and four-point-contact ball bearing
Figure 16 Geometrical tolerances for assembled bearing with flanged outer ring - Single-row angular contact ball bearing and tapered roller bearing?
Key
1——Master outer ring
2——Master inner subunit
Figure 17 Additional symbols for assembled tapered roller bearings
5 Limit deviations and tolerance values
5.1 General
The bore diameter limit deviations and tolerance values for cylindrical bores are given in 5.2 and 5.3 and for flanges in 5.4. The limit deviations and tolerance values for tapered bore are given in 5.5.
The diameter series referred to in Tables 2 to 11 are those defined in ISO 15. In the Tables 2 to 27 the symbols U and L are used as follows:
U——upper limit deviation;
L——lower limit deviation.
5.2 Radial bearings except tapered roller bearings
5.2.1 Tolerance class - Normal
See Tables 2 and 3.
Table 2 Radial bearings except tapered roller bearings - Inner ring- Tolerance class - Normal
Limit deviations and tolerance values in micrometres
d
mm tΔdmp tVdsp tVdmp tKin tΔBs tVBs
Diameter series All Normal Modified a
> ≤ U L 9 0, 1 2, 3, 4 U L
-
0.6
2.5
10
18
30
50
80
120
180
250
315
400
500
630
800
1 000
1 250
1 600 0.6
2.5
10
18
30
50
80
120
180
250
315
400
500
630
800
1 000
1 250
1 600
2 000 0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 -8
-8
-8
-8
-10
-12
-15
-20
-25
-30
-35
-40
-45
-50
-75
-100
-125
-160
-200 10
10
10
10
13
15
19
25
31
38
44
50
56
63
-
-
-
-
- 8
8
8
8
10
12
19
25
31
38
44
50
56
63
-
-
-
-
- 6
6
6
6
8
9
11
15
19
23
26
30
34
38
-
-
-
-
- 6
6
6
6
8
9
11
15
19
23
26
30
34
38
-
-
-
-
- 10
10
10
10
13
15
20
25
30
40
50
60
65
70
80
90
100
120
140 0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 -40
-40
-120
-120
-120
-120
-150
-200
-250
-300
-350
-400
-450
-500
-750
-1 000
-1 250
-1 600
-2 000 -
-
-250
-250
-250
-250
-380
-380
-500
-500
-500
-630
-
-
-
-
-
-
- 12
12
15
20
20
20
25
25
30
30
35
40
50
60
70
80
100
120
140
a Applies to inner rings and outer rings of single bearings made for paired and stack assemblies. Also applies to inner rings with tapered bore with d ≥ 50mm.
?
Table 3 Radial bearings except tapered roller bearings - Outer ring - Tolerance class - Normal
Limit deviations and tolerance values in micrometres
D
mm tΔDmp tVdspa tVDmpa tKea tΔCs
tΔClsb tVCs
tVClsb
Open bearings Capped bearings
Diameter series
> ≤ U L 9 0, 1 2, 3, 4 2, 3, 4 U L
-
2.5
6
18
30
50
80
120
150
180
2.5
6
18
30
50
80
120
150
180
250
0
0
0
0
0
0
0
0
0
0
-8
-8
-8
-9
-11
-13
-15
-18
-25
-30
10
10
10
12
14
16
19
23
31
38
8
8
8
9
11
13
19
23
31
38
6
6
6
7
8
10
11
14
19
23
10
10
10
12
16
20
26
30
38
-
6
6
6
7
8
10
11
14
19
23
15
15
15
15
20
25
35
40
45
50
Identical to tΔBs and tVBs of an inner ring of the same bearing as the outer ring
250
315
400
500
630
800
1 000
1 250
1 600
2 000 315
400
500
630
800
1 000
1 250
1 600
2 000
2 500 0
0
0
0
0
0
0
0
0
0 -35
-40
-45
-50
-75
-100
-125
-160
-200
-250 44
50
56
63
94
125
-
-
-
- 44
50
56
63
94
125
-
-
-
- 26
30
34
38
55
75
-
-
-
- -
-
-
-
-
-
-
-
-
- 26
30
34
38
55
75
-
-
-
- 60
70
80
100
120
140
160
190
220
250
Note: The limit deviations for the outside diameter, D1, of an outer ring flange are given in Table 25.
a Applies before mounting and after removal of internal or external snap ring.
b Applies to groove ball bearings only.
Foreword i
Introduction iii
1 Scope
2 Normative references
3 Terms and definitions
4 Symbols
5 Limit deviations and tolerance values
5.1 General
5.2 Radial bearings except tapered roller bearings
5.3 Radial tapered roller bearings
5.4 Radial bearings, outer ring flanges
5.5 Basically tapered bores, tapers 1:12 and 1:
Annex A (Informative) Symbols and terms as given in the standard of Version 2005 in relation to descriptions given in this standard
Annex B (Informative) Example of drawing indications of characteristics with specification for radial bearings
Annex C (Informative) Illustration of ISO 1132-1 and ISO 14405-1 terms and definitions
Annex D (Informative) Description with illustrations for specification modifiers of linear sizes
Bibliography
滾動軸承 向心軸承
產品幾何技術規范(GPS)和公差值
1范圍
GB/T 307的本部分規定了向心軸承的尺寸和幾何特性、與公稱尺寸的極限偏差以及公差值,以限定向心軸承的界面(倒角除外)。公稱外形尺寸在ISO 15、ISO 355[2]和ISO 8443[7]中給出。
本部分不適用于某些特殊類型的向心軸承(如沖壓外圈滾針軸承)或特殊場合使用的向心軸承(如飛機機架軸承和儀器精密軸承)。這些軸承的公差在相應的標準中給出。
倒角尺寸極限在ISO 582中給出。
2規范性引用文件
下列文件對于本文件的應用是必不可少的。凡是注日期的引用文件,僅注日期的版本適用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改單)適用于本文件。
ISO 15滾動軸承 向心軸承 外形尺寸總方案(Rolling bearings—Radial bearings—Boundary dimensions,general plan)
ISO 582滾動軸承 倒角尺寸 最大值(Rolling bearings—Chamfer dimensions—Maximum values)
ISO 1101產品幾何技術規范(GPS) 幾何公差 形狀、方向、位置和跳動公差(Geometrical product specifications(GPS)—Geometrical tolerancing—Tolerances of form,orientation,location and run-out)
ISO 5593滾動軸承 詞匯(Rolling bearings—Vocabulary)
ISO 14405-1產品幾何技術規范(GPS) 尺寸公差 第1部分:線性尺寸(Geometricalproductspecifications(GPS)—Dimensionaltolerancing—Part1:Linear sizes)
ISO /TS17863產品幾何技術規范(GPS) 活動組件的幾何公差(Geometrical product specifica-tion(GPS)—Geometrical tolerancing of moveable assemblies)
3術語和定義
ISO 1101、ISO 5593、ISO 14405-1和ISO /TS17863界定的術語和定義適用于本文件。
4符號
為表示應用了ISO /GPS體系,即ISO 8015[8],技術產品文件中(如圖樣上)應包含尺寸和幾何特性,與這些特性相關的尺寸和幾何技術規范在表1和圖1~圖17中予以說明。
符號的說明與GPS術語一致;與傳統術語的關系參見附錄A。
與特性相關的公差值用t加特性符號表示,如tVBs。
本部分中缺省的ISO 尺寸規范操作集與ISO 14405-1一致,即兩點尺寸有效。一些規范修飾符在附錄D中予以說明。
ISO 1101、ISO 14405-1中的術語與ISO 1132-1[4]中的傳統術語的定義不完全等同,其差異參見附錄C。
表1公稱尺寸符號、特性符號和規范修飾符
公稱尺寸(尺寸和距離)符號a 特殊符號a GPS符號和規范修飾符b,c 說明d 圖號
B 內圈公稱寬度 1,2,12
VBS 對稱套圈:內圈寬度的兩點尺寸的范圍 1,12
非對稱套圈:由通過內圈內孔軸線的任意縱向截面得到的兩相對直線之間的內圈寬度的最小外接尺寸的范圍 2,7
ΔBS 對稱套圈:內圈寬度的兩點尺寸與其公稱尺寸的偏差 1,12
非對稱套圈,上極限;由通過內圈內孔軸線的任意縱向截面得到的兩相對直線之間的內圈寬度的最小外接尺寸與其公稱尺寸的偏差 2,7
非對稱套圈,下極限;內圈寬度的兩點尺寸與其公稱尺寸的偏差
C 外圈公稱寬度 1,7,12
VCS 對稱套圈:外圈寬度的兩點尺寸的范圍 1,7
非對稱套圈:由通過外圈外表面軸線的任意縱向截面得到的兩相對直線之間的外圈寬度的最小外接尺寸的范圍 2,12
ΔCS 對稱套圈:外圈寬度的兩點尺寸與其公稱尺寸的偏差 1,7
非對稱套圈,上極限;由通過外圈外表面軸線的任意縱向截面得到的兩相對直線之間的外圈寬度的最小外接尺寸與其公稱尺寸的偏差 2,12
非對稱套圈,下極限:外圈寬度的兩點尺寸與其公稱尺寸的偏差
C1 外圈凸緣公稱寬度 12
VC1S 外圈凸緣寬度的兩點尺寸的范圍 12
ΔC1S 外圈凸緣寬度的兩點尺寸與其公稱尺寸的偏差 12
d 圓柱孔或圓錐孔理論小端的公稱內徑 1~7,12~16
Vdmp 由圓柱孔任意截面得到的內徑的平均尺寸(出自兩點尺寸)的范圍 1,2,12
Δdmp 圓柱孔:任意截面內,內徑的平均尺寸(出自兩點尺寸)與其公稱尺寸的偏差 1,2,12
圓錐孔:理論小端內徑的平均尺寸(出自兩點尺寸)與其公稱尺寸的偏差 71
Vdsp 圓柱孔或圓錐孔任意截面內,內徑的兩點尺寸的范圍 1,2,7,12
Δds 圓柱孔內徑的兩點尺寸與其公稱尺寸的偏差 1,2,12
d1 圓錐孔理論大端的公稱內徑 7
Δd1mp 圓錐孔理論大端內徑的平均尺寸(出自兩點尺寸)與其公稱尺寸的偏差 7
D 公稱外徑 1~16
VDmp 由任意截面得到的外徑的平均尺寸(出自兩點尺寸)的范圍 1,2,7,12
ΔDmp 任意截面內,外徑的平均尺寸(出自兩點尺寸)與其公稱尺寸的偏差 1,2,7,12
VDsp 任意截面內,外徑的兩點尺寸的范圍 1,2,7,12
ΔDs 外徑的兩點尺寸與其公稱尺寸的偏差 1,2,7,12
D1 外圈凸緣公稱外徑 12
ΔD1s 外圈凸緣外徑的兩點尺寸與其公稱尺寸的偏差 12
Kea 成套軸承外圈外表面對基準(即由內圈內孔表面確定的軸線)的徑向圓跳動 4,5,6,9,10,11,14,15,16
Kia 成套軸承內圈內孔表面對基準(即由外圈外表面確定的軸線)的徑向圓跳動 4,5,6,9,10,11,14,15,16
Sd 內圈端面對基準(即由內圈內孔表面確定的軸線)的軸向圓跳動 3,8,13
SD 外圈外表面軸線對基準(由外圈端面確定)的垂直度 3,8
SD1 外圈外表面軸線對基準(由外圈凸緣背面確定)的垂直度 13
Sea 成套軸承外圈端面對基準(即由內圈內孔表面確定的軸線)的軸向圓跳動 5,6,10,11
Seal 成套軸承外圈凸緣背面對基準(即由內圈內孔表面確定的軸線)的軸向圓跳動 15,16
Sia 成套軸承內圈端面對基準(即由外圈外表面確定的軸線)的軸向圓跳動 5,6,10,11,15,16
SLh 圓錐坡高,即圓錐孔理論大端和小端公稱直徑之差(d1—d) 7
ΔSL 錐形內圈的圓錐坡高與其公稱尺寸的偏差 7
T 成套軸承公稱寬度 17
ΔTs 成套軸承寬度的最小外接尺寸與其公稱尺寸的偏差 17
T1 內組件與標準外圈裝配后的公稱有效寬度 17
ΔT1s 有效寬度(內組件與標準外圈裝配后)的最小外接尺寸與其公稱尺寸的偏差 17
T2 外圈與標準內組件裝配后的公稱有效寬度 17
ΔT2s 有效寬度(外圈與標準內組件裝配后)的最小外接尺寸與其公稱尺寸的偏差 17
TF 成套凸緣軸承公稱寬度 17
ΔTFs 成套凸緣軸承寬度的最小外接尺寸與其公稱尺寸的偏差 17
TF2 外圈與標準內組件裝配后的公稱有效寬度 17
ΔTF2s 有效寬度(凸緣外圈與標準內組件裝配后)的最小外接尺寸與其公稱尺寸的偏差 17
α 截頭圓錐內孔的角度 7,8,9,10,11
αk 端面到SD或SD1約束區邊界的距離 3,8,13
a除了格式,按ISO 15241[14]中定義的符號。
b按ISO 1101和ISO 14405-1中定義的符號。
c如果兩點尺寸適用于規定的上,下極限,則規范修飾符“ ”在圖樣上不用標注。
d說明按ISO 1101、ISO 5459[7]和ISO 14405-1。
e對面的材料不存在時,如背面倒角較大且前面較小的圓錐滾子軸承外圈,規范修飾符“ ”不適用。需要在GPS體系框架內制定一解決方案,在將來本文件修訂時再予以考慮。
f規范修飾符“SCS”在圖樣上可省略。
g重力方向符號“ ”、固定零件符號“FP”,活動零件符號“MP”按ISO /TS17863,見圖4、圖5、圖6、圖9、圖10、圖11、圖14、圖15、圖16和圖17。
H SL系距離。
i說明按ISO 11191[3]。
K rsmin≤0.6時,a=rsman,軸向+0.5;rsmin>0.6時,a=1.2×rsman,軸向;rsman,軸向軸向見ISO 582。rsmin和rsman,軸向的定義見ISO 582。
圖1~圖17中的標注表明了界面尺寸和相應尺寸公差和幾何公差符號之間的關系。
單個部件的規范在圖1、圖2、圖3、圖7、圖8、圖12和圖13中舉例說明。成套部件的規范在圖4、圖5、圖6、圖9、圖10、圖11、圖14、圖15、圖16和圖17中說明。
注:圖1~圖17只是概略地畫出,不一定示出了所有結構細節。
兩個實際圖樣標注示例參見附錄B。
圖1圓柱孔、對稱套圈軸承單個部件的尺寸規范
注:tVBs和tVCs與圓錐滾子軸承不相關。
圖2圓柱孔、非對稱套圈軸承單個部件的尺寸規范
圖3圓柱孔軸承單個部件的幾何公差
=滾動體和內、外圈滾道均接觸
圖4圓柱孔成套軸承的幾何公差——圓柱滾子軸承、調心滾子軸承、長弧面滾子軸承和調心球軸承
=滾動體和內、外圈滾道均接觸
圖5圓柱孔成套軸承的幾何公差——深溝球軸承、雙列深溝球軸承、雙列角接觸球軸承和四點接觸球軸承
=滾動體和內、外圈滾道均接觸;對于圓錐滾子軸承,滾動體和內圈背面擋邊也接觸
圖6圓柱孔成套軸承的幾何公差——單列角接觸球軸承和圓錐滾子軸承
=SL是根據d和d1計算出來的公稱尺寸,即SL=(d1-d)=2Btan(α/2):ΔSL是計算出來的特性,即ΔSL=(Δdlmp-Δdmp)
注:非對稱外圈的標注見圖2。
圖7圓錐孔軸承單個部件的尺寸規范
圖8圓錐孔軸承單個部件的幾何公差
=滾動體和內、外圈滾道均接觸
圖9圓錐孔成套軸承的幾何公差——圓柱滾子軸承、調心滾子軸承、長弧面滾子軸承和調心球軸承
=滾動體和內、外圈滾道均接觸
圖10圓錐孔成套軸承的幾何公差——深溝球軸承、雙列深溝球軸承、雙列角接觸球軸承和四點接觸球軸承
=滾動體和內、外圈滾道均接觸;對于圓錐滾子軸承,滾動體與內圈背面擋邊也接觸
圖11圓錐孔成套軸承的幾何公差——單列角接觸球軸承和圓錐滾子軸承
注:非對稱外圈的標注見圖2。
圖12凸緣外圈軸承單個部件的尺寸規范
圖13凸緣外圈軸承單個部件的幾何公差
=滾動體和內、外圈滾道均接觸
圖14凸緣外圈成套軸承的幾何公差——圓柱滾子軸承、調心滾子軸承、長弧面滾子軸承和調心球軸承
=滾動體和內、外圈滾道均接觸
圖15凸緣外圈成套軸承的幾何公差——深溝球軸承、雙列深溝球軸承、雙列角接觸球軸承和四點接觸球軸承
=滾動體和內、外圈滾道均接觸;對于圓錐滾子軸承,滾動體和內圈背面擋邊也接觸
圖16凸緣外圈成套軸承的幾何公差——單列角接觸球軸承和圓錐滾子軸承
=G1或G2
=滾動體和內,外圈滾道均接觸:對于圓錐滾子軸承,滾動體與內圈背面擋邊也接觸
說明:
1——標準外圈;
2——標準內組件。
圖17成套圓錐滾子軸承的附加符號
5極限偏差和公差值
5.1總則
圓柱孔軸承的內徑極限偏差和公差值見5.2和5.3,凸緣見5.4。圓錐孔軸承的內徑極限偏差和公差值見5.5。
表2~表11中引用的直徑系列規定在ISO 15中。表2~表27中,使用如下符號U和L:
U——上極限偏差;
L——下極限偏差。
5.2向心軸承(圓錐滾子軸承除外)
5.2.1普通級公差
見表2和表3。
表2向心軸承(圓錐滾子軸承除外)——內圈—普通級公差
極限偏差和公差值單位為微米
d
mm tΔdmp tVdsp tVdmp tKin tΔBs tVBs
直徑系列 全部 正常 修正a
> ≤ U L 9 0、1 2、3、4 U L
a適用于成對或成組安裝時單個軸承的內、外圈,也適用于d≥50mm錐孔軸承的內圈。
?
表3向心軸承(圓錐滾子軸承除外)——外圈—普通級公差
極限偏差和公差值單位為微米
D
mm tΔDmp tVdspa tVDmpa tKea tΔCs
tΔClsb tVCs
tVClsb
開型軸承 閉型軸承
直徑系列
> ≤ U L 9 0、1 2、3、4 2、3、4 U L
與同一軸承內圈的tΔBs及tVBs相同
注:外圈凸緣外徑D1的極限偏差在表25中給出。
a適用于內、外止動環安裝前或拆卸后。
b僅適用于溝型球軸承。
5.2.26級公差
見表4和表5。
?
表4向心軸承(圓錐滾子軸承除外)——內圈——6級公差
極限偏差和公差值單位為微米
d
mm tΔdmp tVdsp tVdmp tKin tΔBs tVBs
直徑系列 全部 正常 修正a
> ≤ U L 9 0、1 2、3、4 U L
a適用于成對或成組安裝時單個軸承的內、外圈,也適用于d≥50mm錐孔軸承的內圈。
?
表5向心軸承(圓錐滾子軸承除外)——外圈——6級公差
極限偏差和公差值單位為微米
D
mm tΔDmp tVdspa tVDmpa tKea tΔCs
tΔClsb tVCs
tVClsb
開型軸承 閉型軸承
直徑系列
> ≤ U L 9 0、1 2、3、4 0、1、2、3、4 U L
與同一軸承內圈的tΔBs及tVBs相同
注:外圈凸緣外徑D1的極限偏差在表25中給出。
a適用于內、外止動環安裝前或拆卸后。
b適用于溝型球軸承。
5.2.35級公差
見表6和表7。
?
表6向心軸承(圓錐滾子軸承除外)——內圈——5級公差
極限偏差和公差值單位為微米
d
mm tΔdmp tVdsp tVdmp tKia tSd tsiaa tΔBs tVBs
直徑系列 全部 正常 修正b
> ≤ U L 9 0、1、2、3、4 U L
a僅適用于溝型球軸承。
b適用于成對或成組安裝時單個軸承的內、外圈,也適用于d≥50mm錐孔軸承的內圈。
表7向心軸承(圓錐滾子軸承除外)——外圈——5級公差
極限偏差和公差值單位為微米
D
mm tΔDmp tVDspa,b tVDmpb tKea tSDc,e
tSD1d,e tSeac,d tSeald tΔCs
tΔC1sd tVCs
tVC1sd
直徑系列
> ≤ U L 9 0、1、2、3、4 U L
與同一軸承內圈的tΔBs相同
注:外圈凸緣外徑D1的極限偏差在表25中給出。
a對閉型軸承未規定數值。
b適用于內、外止動環安裝前或拆卸后。
c不適用于凸緣外圈軸承。
d僅適用于溝型球軸承。
e與上一版標準相比,公差值已變為原數值的一半,因為本版已將SD和SD1定義為外圈外表面軸線對基準(由外圈端面或外圈凸緣背面確定)的垂直度。
5.2.44級公差
見表8和表9。
表8向心軸承(圓錐滾子軸承除外)——內圈——4級公差
極限偏差和公差值單位為微米
d
mm tΔdmpa
tΔdsb tVdsp tVdmp tKia tSd tsiac tΔBs tVBs
直徑系列 全部 正常 修正b
> ≤ U L 9 0、1、2、3、4 U L
a這些偏差僅適用于直徑系列9。
b這些偏差僅適用于直徑系列0、1、2、3和4。
c僅適用于溝型球軸承。
d適用于成對或成組安裝時單個軸承的內、外圈。
表9向心軸承(圓錐滾子軸承除外)——外圈——4級公差
極限偏差和公差值單位為微米
d
mm tΔDmpa
tΔDsb tVDspc,d tVDmpd tKea tSDc,f
tSD1f,g tSeae,g tSealg tΔCs
tΔC1sg tVCs
tVC1sg
直徑系列
> ≤ U L 9 0、1、2、3、4 U L
與同一軸承內圈的tΔBs相同
注:外圈凸緣外徑D1的極限偏差在表25中給出。
a這些偏差僅適用于直徑系列9。
b這些偏差僅適用于直徑系列0、1、2、3和4。
c對閉型軸承未規定數值。
d適用于內、外止動環安裝前或拆卸后。
e不適用于凸緣外圈軸承。
f與上一版標準相比,公差值已變為原數值的一半,因為本版已將SD和SD1定義為外圈外表面軸線對基準(由外圈端面或外圈凸緣背面確定)的垂直度。
g僅適用于溝型球軸承。
5.2.52級公差
見表10和表11。
表10向心軸承(圓錐滾子軸承除外)——內圈——2級公差
極限偏差和公差值單位為微米
d
mm tΔdmpa
tΔdsb tVdsp tVdmp tKia tSd tsiac tΔBs tVBs
全部 正常 修正b
> ≤ U L U L
a這些偏差僅適用于直徑系列9。
b這些偏差僅適用于直徑系列0、1、2、3和4。
c僅適用于溝型球軸承。
d適用于成對或成組安裝時單個軸承的內、外圈。
?