Codeofchina.com is in charge of this English translation. In case of any doubt about the English translation, the Chinese original shall be considered authoritative.
This standard is one of the standards of LTE-based vehicular communication, of which, the composition and titles are as follows:
a) YD/T 3400-2018 General technical requirements of LTE-based vehicular communication;
b) YD/T 3340-2018 Technical requirements of air interface of LTE-based vehicular communication.
Technical requirements and test methods of corresponding equipment will be formulated subsequently.
This standard is developed in accordance with the rules given in GB/T 1.1-2009.
This standard was proposed by and is under the jurisdiction of China Communications Standards Association.
Introduction
The issuing authority of this document draws attention to the fact that the declaration of conformity with this document may involve the use of patents related to the technical requirements of PC5 interface in Clause 5 and Uu interface in Clause 6.
The issuing body of this document takes no position concerning the evidence, validity and scope of this patent right.
The holder of this patent right has assured the issuing body of this document that he/she is willing to negotiate licenses under reasonable and non-discriminatory terms and conditions with any applicant. The statement of the holder of this patent right is registered with the issuing body of this document. Information may be obtained according to the following contact information.
Name of patent holder: China Academy of Telecom Technology
Address: No. 40, Xueyuan Road, Haidian District, Beijing
Name of patent holder: Huawei Technologies Co., Ltd.
Address: Huawei Base B1, Bantian, Longgang District, Shenzhen, Guangdong
Name of patent holder: ZTE Corporation
Address: ZTE Plaza, No.55 Keji South Road, Nanshan District, Shenzhen, Guangdong
Name of patent holder: China Mobile Communications Corporation
Address: No.28 Financial Street, Xicheng District, Beijing
Name of patent holder: QUALCOMM INCORPORATED
Address: Qualcomm Wireless Communication Technology (China) Co., Ltd., 6F, Tower C, World Trade Center, No.36 North Third Ring East Road, Beijing
Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights other than those identified above. The issuing body of this document shall not be held responsible for identifying any or all such patent rights.
Technical requirements of air interface of LTE-based vehicular communication
1 Scope
This standard specifies the technical requirements of air interface of LTE-based vehicular communication, including the technical requirements of PC5 interface of sidelink communication between terminals and Uu interface of uplink/downlink communication between terminal and base station; it also specifies the physical layer, MAC layer, RLC layer, PDCP layer and RRC layer in these two working modes and the UE procedure in idle mode.
This standard is applicable to the LTE-based vehicular communication, including V2V, V2I, V2P and V2N communication scenarios.
2 Normative references
The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced documents (including any amendments) applies.
YD/T 3340-2018 General technical requirements of LTE-based vehicular communication
3GPP TS 23.285 (Release 14) Technical specification group services and system aspects; architecture enhancements for V2X services
3GPP TS 24.334 (Release 14) Proximity-services (ProSe) user equipment (UE) to ProSe function protocol aspects; Stage 3
3GPP TS 24.386 (Release 14) User equipment (UE) to V2X control function; Protocol aspects: Stage 3)
3GPP TS 36.101 (Release 14) Evolved universal terrestrial radio access (E-UTRA); User equipment (UE) radio transmission and reception
3GPP TS 36.133 (Release 14) Evolved universal terrestrial radio access (E-UTRA): Requirements for support of radio resource management
3GPP TS 36.211 (Release 14) Evolved universal terrestrial radio access (E-UTRA): Physical channels and modulation
3GPP TS 36.212 (Release 14) Evolved universal terrestrial radio access (E-UTRA); Multiplexing and channel coding
3GPP TS 36.213 (Release 14) Evolved universal terrestrial radio access (E-UTRA); Physical layer procedures
3GPP TS 36.214 (Release 14) Evolved universal terrestrial radio access (E-UTRA); Physical layer-measurements
3GPP TS 36.304 (Release 14) Evolved universal terrestrial radio access (E-UTRA); User equipment (UE) procedures in idle mode
3GPP TS 36.321 (Release 14) Evolved universal terrestrial radio access (E-UTRA): Medium access control (MAC) protocol specification
3GPP TS 36.322 (Release 14) Evolved universal terrestrial radio access (E-UTRA): Radio link control (RLC) protocol specification
3GPP TS 36.323 (Release 14) Evolved universal terrestrial radio access (E-UTRA); Packet data convergence protocol (PDCP) specification
3GPP TS 36.331 (Release 14) Evolved universal terrestrial radio access (E-UTRA): Radio resource control (RRC) protocol specification
3 Abbreviations
For the purposes of this document, the following abbreviations apply.
3GPP the 3rd Generation Partnership Project
AM Acknowledged Mode
BSR Buffer Status Report
CBR Channel Busy Ratio
CR Channel Occupancy Ratio
CRC Cyclic Redundancy Check
CSI Channel Status Indicator
DCI Downlink Control Information
DL Downlink
DFN Direct Frame Number
DMRS Demodulation Reference Signal
eNB E-UTRAN Node B
E-PDCCH Enhanced Physical Downlink Control Channel
E-UTRA Evolved Universal Terrestrial Radio Access
E-UTRAN Evolved Universal Terrestrial Radio Access Network
FDD Frequency Division Duplex
FDM Frequency Division Multiplex
GNSS Global Navigation Satellite System
IE Information Element
LCID Logical Channel ID
LTE Long Term Evolution
MAC Medium Access Control
MBMS Multimedia Broadcast Multicast Service
MCCH Multicast Control Channel
MCS Modulation and Coding Scheme
MIB Master Information Block
MIB-SL Master Information Block-Sidelink
NAS Non Access Stratum
P2X Pedestrian-to-Everything
PCell Primary Cell
PDCCH Physical Downlink Control Channel
PDCP Packet Data Convergence Protocol
PDU Protocol Data Unit
PLMN Public Land Mobile Network
PPPP ProSe Per-Packet Priority
PRACH Physical Random Access Channel
PRB Physical Resource Block
PSBCH Physical Sidelink Broadcast Channel
PSCCH Physical Sidelink Control Channel
PSSCH Physical Sidelink Shared Channel
PSSS Primary Sidelink Synchronization Signal
PUCCH Physical Uplink Control Channel
PUSCH Physical Uplink Shared Channel
QAM Quadrature Amplitude Modulation
QPSK Quadrature Phase Shift Keying
RB Resource Block
RIV Resource Indication Value
RLC Radio Link Control
RNTI Radio Network Temporary Identifier
RRC Radio Resource Control
RSRP Reference Signal Received Power
SBCCH Sidelink Broadcast Control Channel
SCell Secondary Cell
SCI Sidelink Control Information
SC-FDMA Single Carrier Frequency Division Multiplex Access
SDU Service Data Unit
SFN System Frame Number
SIB System Information Block
SL Sidelink
SL-BCH Sidelink Broadcast Channel
SL-SCH Sidelink Share Channel
SLSS Sidelink Synchronization Signal
SL-RNTI Sidelink RNTI
SL-V-RNTI V2X Sidelink V2X RNTI
SPS Semi-Persistent Scheduling
S-RSRP Sidelink Reference Signal Received Power
S-RSSI Sidelink Received Signal Strength Indicator
SSSS Secondary Sidelink Synchronization Signal
STCH Sidelink Traffic Channel
SyncRef UE the UE as synchronization reference
TDD Time Division Duplex
TDM Time Division Multiplex
TM Transparent Mode
TTI Transmission Time Interval
UE User Equipment
UL Uplink
UL-SCH Uplink Shared Channel
UM Unacknowledged Mode
V2I Vehicle to Infrastructure
V2N Vehicle to Network
V2P Vehicle to Pedestrian
V2V Vehicle to Vehicle
V-RNTIV2X V2X RNTI
4 General
LTE-based vehicular communication technology works in two working mode, one is sidelink communication mode between terminals, in which the air interface between terminals is called PC5 interface; the other is uplink/downlink communication mode between terminal and base station, in which the air interface between terminal and base station is called Uu interface.
Clause 5 specifies the technical requirements of PC5 interface of LTE-based vehicular communication. The sidelink communication mode includes two transmission modes, in which the sidelink transmission mode 3 is resource scheduling and allocation, and the sidelink transmission mode 4 is UE autonomous resources selection, as defined in 7.2.2 of YD/T 3400-2018 General technical requirements of LTE-based vehicular communication.
The correspondence between document structure and content of Clause 5 and 3GPP technical specification is as follows.
——5.1 specifies the technical requirements of physical layer.
——5.1.1 specifies the physical channel and modulation, corresponding to 3GPP TS 36.211 (Release 14).
——5.1.2 specifies the multiplexing and channel coding, corresponding to 3GPP TS 36.212 (Release 14).
——5.1.3 specifies the physical layer procedure, corresponding to 3GPP TS 36.213 (Release 14).
——5.1.4 specifies the physical layer measurement, corresponding to 3GPP TS 36.214 (Release 14).
——5.2 specifies the technical requirements of media access control (MAC) layer, corresponding to 3GPP TS 36.321 (Release 14).
——5.3 specifies the technical requirements of radio link control (RLC) layer, corresponding to 3GPP TS 36.322 (Release 14).
——5.4 specifies the technical requirements of packet data convergence protocol (PDCP) layer, corresponding to 3GPP TS 36.323 (Release 14).
——5.5 specifies the technical requirements of radio resource control (RRC) layer, corresponding to 3GPP TS 36.331 (Release 14).
——5.6 specifies the technical requirements of UE procedure in idle mode, corresponding to 3GPP TS 36.304 (Release 14).
Clause 6 specifies the technical requirements of Uu interface of LTE-based vehicular communication.
The correspondence between document structure and content of Clause 6 and 3GPP technical specification is as follows.
——6.1 specifies the technical requirements of physical layer.
——6.1.1 specifies the physical channel and modulation, corresponding to 3GPP TS 36.211 (Release 14).
——6.1.2 specifies the multiplexing and channel coding, corresponding to 3GPP TS 36.212 (Release 14).
——6.1.3 specifies the physical layer procedure, corresponding to 3GPP TS 36.213 (Release 14).
——6.1.4 specifies the physical layer measurement, corresponding to 3GPP TS 36.214 (Release 14).
——6.2 specifies the technical requirements of media access control (MAC) layer, corresponding to 3GPP TS 36.321 (Release 14).
——6.3 specifies the technical requirements of radio link control (RLC) layer, corresponding to 3GPP TS 36.322 (Release 14).
——6.4 specifies the technical requirements of packet data convergence protocol (PDCP) layer, corresponding to 3GPP TS 36.323 (Release 14).
——6.5 specifies the technical requirements of radio resource control (RRC) layer, corresponding to 3GPP TS 36.331 (Release 14).
——6.6 specifies the technical requirements of UE procedure in idle mode, corresponding to 3GPP TS 36.304 (Release 14).
5 Technical requirements of PC5 interface
5.1 Physical layer
5.1.1 Physical channel and modulation
5.1.1.1 General
5.1.1.1.1 Physical channel
The physical sidelink channel corresponds to a set of resource elements carrying information from higher layers. The sidelink contains the following physical channels.
——Physical Sidelink Shared Channel, PSSCH.
——Physical Sidelink Control Channel, PSCCH.
——Physical Sidelink Broadcast Channel, PSBCH.
Figure 1 specifies the processing procedure of baseband signal of physical sidelink channel.
Figure 1 Overview of processing procedure of baseband signal in physical sidelink channel
5.1.1.1.2 Physical signal
The physical sidelink signal is used by the physical layer but does not carry information from the higher layer. The sidelink contains the following physical signals:
——DMRS;
——Synchronization signal.
5.1.1.2 Time slot structure and physical resources
5.1.1.2.1 Radio frame structure
The transmission of sidelink is composed of radio frames with a length of Tf, and each radio frame contains 20 time slots with a length of Tslot. A sidelink subframe contains two contiguous time slots, starting from an even-numbered slot. Wherein, Tf=307200×Ts=10ms, Tslot=15360·Ts=0.5ms, Ts=1/(15000×2048). The sidelink radio frame structure is shown in Figure 2.
Figure 2 Sidelink radio frame structure
5.1.1.2.2 Resource grid
A physical sidelink channel or signal contains subcarriers and SC-FDMA symbols in a time slot. When the serving cell and the sidelink have the same uplink frequency and meet the S criterion according to 5.2.3.2 of 3GPP TS 36.304 (Release 14), the bandwidth of the sidelink is , and the bandwidth in other cases is a configurable value (defined in 5.5).
The PSSCH, PSCCH, PSBCH and synchronization signals of the sidelinks configured for transmission mode 3 and transmission mode 4 only support the normal cyclic prefix.
The resource grids are shown in Figure 3.
Figure 3 Sidelink resource grids
An antenna port is defined as the channel to which one symbol transmitted at the antenna port belongs, which may be inferred from the channel to which another symbol transmitted at the same antenna port belongs. Each antenna port corresponds to a resource grid, and the antenna ports used for physical channel or signal transmission are shown in Table 1.
Table 1 Antenna ports used for different physical channels and signals
Physical channel or signal Antenna port number
PSSCH 1000
PSCCH 1000
PSBCH 1010
Synchronization signal 1020
5.1.1.2.3 Resource elements
Every element in the resource grid is called a resource element, and (k, l) is uniquely indicated by an index in a time slot. Wherein, k=0, …, , l=0, …, represent the number in frequency domain and time domain respectively.
The resource element (k, l) on the antenna port p corresponds to a complex number , and the index pp may be omitted where no confusion will be caused or no specific antenna port is designated.
If a resource element is not used to transmit physical channel or physical signal, the value of shall be set to 0.
5.1.1.2.4 Resource block
A resource block is defined as contiguous SC-FDMA symbols and contiguous frequency-domain subcarriers in the time domain, see Table 2 for and . A physical resource block is composed of resource elements, which respectively correspond to a time slot in a time domain and 180kHz in a frequency domain.
Table 2 Physical resource block parameters
Configuration
Normal cyclic prefix 12 7
Extended cyclic prefix 12 6
The relationship between physical resource block number nPRB and the resource element (k, l) in a time slot is shown in Equation (1).
(1)
5.1.1.2.5 Resource pool
5.1.3 defines the subframe pool and resource block pool.
For PSSCH, the current time slot number in the subframe pool is , where i∈{0,1} is the number of the current time slot in the current sidelink subframe , k is equal to the footnote of , is defined by sidelink transmission mode 3 in 5.1.3.2.1.2 and by sidelink transmission mode 4 in 5.1.3.2.1.3.
5.1.1.2.6 Guard interval
The last SC-FDMA symbol of the sidelink subframe serves as a guard interval and cannot be used for the transmission of sidelink.
5.1.1.3 PSSCH
5.1.1.3.1 Scrambling
Bit blocks b(0), ..., b(Mbit-1) transmitted on PSSCH within a subframe (where Mbit is the number of transmitted bits) shall be scrambled according to 5.3.1 of 3GPP TS 36.211 (Release 14).
Scrambling sequence shall be initialized at the beginning of each PSSCH subframe according to , where, for sidelink transmission modes 3 and 4, , p and L are given in 5.1.1 of 3GPP TS 36.212 (Release 14), is equal to the decimal representation of CRC check code of PSCCH transmitted in the same subframe as PSSCH.
5.1.1.3.2 Modulation
Conduct modulation according to 5.3.2 of 3GPP TS 36.211 (Release 14). See Table 3 for the modulation mode of PSSCH.
Table 3 Modulation mode of PSSCH
Physical channel Modulation mode
PSSCH QPSK, 16QAM
5.1.1.3.3 Layer mapping
Conduct layer mapping according to 5.3.2A of 3GPP TS 36.211 (Release 14), assuming that there is only one antenna port with v=1.
5.1.1.3.4 Transform precoding
Conduct transform precoding according to 5.3.3 of 3GPP TS 36.211 (Release 14), and replace and with and respectively.
5.1.1.3.5 Pre-coding
Conduct pre-coding according to 5.3.3A of 3GPP TS 36.211 (Release 14), and it shall be assumed that there is only one antenna port with v=1.
5.1.1.3.6 Physical resource mapping
Multiply complex symbol blocks z(0), ..., z( ) by the amplitude scaling factor βPSSCH to adjust the transmission power PPSSCH (defined in 5.1.3.2.1.5), and then map to the physical resource blocks allocated to PSSCH for transmission on the antenna port p in a sequence from z(0). The mapping to the resource elements (k, l) starts from the first time slot of the subframe, and the index k is increased first, and then the index l is increased, wherein the resource elements (k, l) are those except for reference signal transmission in the above resource block for transmission. The resource elements of the last SC-FDMA symbol in a subframe need to be counted in the mapping procedure but cannot be used for transmission.
V2X communication does not support sidelink hopping, and the physical resource block for transmission is nPRB=n′VRB, where n′VRB is provided in 5.1.3.
Foreword i
Introduction ii
1 Scope
2 Normative references
3 Abbreviations
4 General
5 Technical requirements of PC5 interface
5.1 Physical layer
5.2 MAC Layer
5.3 RLC Layer
5.4 PDCP layer
5.5 RRC layer
5.6 UE procedure in idle mode
6 Technical requirements of Uu interface
6.1 Physical layer
6.2 MAC Layer
6.3 RLC layer
6.4 PDCP layer
6.5 RRC layer
6.6 UE procedure in idle mode
基于LTE的車聯網無線通信技術空中接口技術要求
1 范圍
本標準規定了基于LTE的車聯網無線通信技術的空中接口技術要求,包括終端之間直通鏈路通信方式的PC5接口技術要求,以及終端與基站之間的上/下行鏈路通信方式的Uu接口技術要求;規定了這兩種工作方式下的物理層、MAC層、RLC層、PDCP層、RRC層以及空閑模式下的UE過程。
本標準適用于基于LTE的車聯網無線通信系統,包括V2V、V2I、V2P、V2N通信場景。
2 規范性引用文件
下列文件對于本文件的應用是必不可少的。凡是注日期的引用文件,僅注日期的版本適用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改單)適用于本文件。
YD/T 3340—2018 基于LTE的車聯網無線通信技術 總體技術要求
3GPP TS 23.285(Release 14)服務和系統方面技術規范組;V2X服務架構增強(“Technical Specification Group Services and System Aspects;Architecture enhancements for V2X services”)
3GPP TS 24.334(Release 14)鄰近服務用戶設備鄰近服務功能協議;階段3(“Proximity-services (ProSe)User Equipment(UE)to ProSe function protocol aspects;Stage 3”)
3GPP TS 24.386(Release 14)用戶設備V2X控制功能;協議;階段3(“User Equipment(UE)to V2X control function;protocol aspects:Stage 3”)
3GPP TS 36.101(Release 14)演進通用陸地無線接入(E-UTRA);用戶設備無線發送與接收(“Evolved Universal Terrestrial Radio Access(E-UTRA);User Equipment(UE)radio transmission and reception”)
3GPP TS 36.133(Release 14)演進通用陸地無線接入(E-UTRA);支持無線資源管理功能的要求(“Evolved Universal Terrestrial Radio Access(E-UTRA);Requirements for support of radio resource management”)
3GPP TS 36.211(Release 14)演進通用陸地無線接入(E-UTRA);物理信道和調制(“Evolved Universal Terrestrial Radio Access(E-UTRA):Physical channels and modulation”)
3GPP TS 36.212(Release 14)演進通用陸地無線接入(E-UTRA);復用和信道編碼(“Evolved Universal Terrestrial Radio Access(E-UTRA);Multiplexing and channel coding”)
3GPP TS 36.213(Release 14)演進通用陸地無線接入(E-UTRA);物理層過程(“Evolved Universal Terrestrial Radio Access(E-UTRA);Physical layer procedures”)
3GPP TS 36.214(Release 14)演進通用陸地無線接入(E-UTRA);物理層測量(“Evolved Universal Terrestrial Radio Access(E-UTRA);Physical layer-Measurements”)
3GPP TS 36.304(Release 14)演進通用陸地無線接入(E-UTRA);空閑模式下的UE過程(“Evolved Universal Terrestrial Radio Access(E-UTRA);User Equipment(UE)procedures in idle mode”)
3GPP TS 36.321(Release 14)演進通用陸地無線接入(E-UTRA):媒體接入控制(MAC)協議規范(“Evolved Universal Terrestrial Radio Access(E-UTRA):Medium Access Control(MAC)protocol specification”)
3GPP TS 36.322(Release 14)演進通用陸地無線接入(E-UTRA);無線鏈路控制(RLC)協議規范(“Evolved Universal Terrestrial Radio Access(E-UTRA):Radio Link Control(RLC)protocol specification”)
3GPP TS 36.323(Release 14)演進通用陸地無線接入(E-UTRA);分組數據匯聚協議(PDCP)規范(“Evolved Universal Terrestrial Radio Access(E-UTRA);Packet Data Convergence Protocol(PDCP)Specification”)
3GPP TS 36.331(Release 14)演進通用陸地無線接入(E-UTRA);無線資源控制(RRC)協議規范(“Evolved Universal Terrestrial Radio Access(E-UTRA):Radio Resource Control(RRC)Protocol specification”)
3 縮略語
下列縮略語適用于本文件。
3GPP 第三代合作伙伴計劃 the 3rd Generation Partnership Project
AM 確認模式 Acknowledged Mode
BSR 緩存狀態報告 Buffer Status Report
CBR 信道忙率 Channel Busy Ratio
CR 信道占用率 Channel Occupancy Ratio
CRC 循環冗余碼校驗 Cyclic Redundancy Check
CSI 信道狀態指示 Channel Status Indicator
DCI 下行鏈路控制信息 Downlink Control Information
DL 下行鏈路 Downlink
DFN 直接幀序號 Direct Frame Number
DMRS 解調參考信號 Demodulation Reference Signal
eNB 演進型基站 E-UTRAN Node B
E-PDCCH 增強物理下行控制信道 Enhanced Physical Downlink Control Channel
E-UTRA 演進型通用陸地無線接入 Evolved Universal Terrestrial Radio Access
E-UTRAN 演進型通用陸地無線接入網 Evolved Universal Terrestrial Radio Access Network
FDD 頻分雙工 Frequency Division Duplex
FDM 頻分復用 Frequency Division Multiplex
GNSS 全球導航衛星系統 Global Navigation Satellite System
IE 信息元素 Information Element
LCID 邏輯信道標識 Logical Channel ID
LTE 長期演進 Long Term Evolution
MAC 媒體控制接入 Medium Access Control
MBMS 多媒體廣播多播業務 Multimedia Broadcast Multicast Service
MCCH 多播控制信道 Multicast Control Channel
MCS 調制編碼方式 Modulation and Coding Scheme
MIB 主信息塊 Master Information Block
MIB-SL 直通鏈路主信息塊 Master Information Block-Sidelink
NAS 非接入層 Non Access Stratum
P2X 行人對外界 Pedestrian-to-Everything
PCell 主小區 Primary Cell
PDCCH 物理下行控制信道 Physical Downlink Control Channel
PDCP 分組數據匯聚協議 Packet Data Convergence Protocol
PDU 協議數據單元 Protocol Data Unit
PLMN 公共陸地移動網絡 Public Land Mobile Network
PPPP 鄰近業務數據包優先級 ProSe Per-Packet Priority
PRACH 物理隨機接入信道 Physical Random Access Channel
PRB 物理資源塊 Physical Resource Block
PSBCH 物理直通鏈路廣播信道 Physical Sidelink Broadcast Channel
PSCCH 物理直通鏈路控制信道 Physical Sidelink Control Channel
PSSCH 物理直通鏈路共享信道 Physical Sidelink Shared Channel
PSSS 直通鏈路主同步信號 Primary Sidelink Synchronisation Signal
PUCCH 物理下行鏈路控制信道 Physical Uplink Control Channel
PUSCH 物理下行鏈路共享信道 Physical Uplink Shared Channel
QAM 正交幅度調制 Quadrature Amplitude Modulation
QPSK 正交移向鍵控 Quadrature Phase Shift Keying
RB 資源塊 Resource Block
RIV 資源指示值 Resource Indication Value
RLC 無線鏈路控制 Radio Link Control
RNTI 無線網絡臨時標識 Radio Network Temporary Identifier
RRC 無線資源控制 Radio Resource Control
RSRP 參考信號接收功率 Reference Signal Received Power
SBCCH 直通鏈路廣播控制信道 Sidelink Broadcast Control Channel
SCell 輔小區 Secondary Cell
SCI 直通鏈路控制信息 Sidelink Control Information
SC-FDMA 單載波頻分多址接入 Single Carrier Frequency Division Multiplex Access
SDU 業務數據單元 Service Data Unit
SFN 系統幀序號 System Frame Number
SIB 系統信息塊 System Information Block
SL 直通鏈路 Sidelink
SL-BCH 直通鏈路廣播信道 Sidelink Broadcast Channel
SL-SCH 直通鏈路共享信道 Sidelink Share Channel
SLSS 直通鏈路同步信號 Sidelink Synchronisation Signal
SL-RNTI 直通鏈路無線網絡臨時標識 Sidelink RNTI
SL-V-RNTI V2X直通無線網絡臨時標識 Sidelink V2X RNTI
SPS 半持續調度 Semi-Persistent Scheduling
S-RSRP 直通參考信號接收功率 Sidelink Reference Signal Received Power
S-RSSI 直通鏈路接收信號強度指示 Sidelink Received Signal Strength Indicator
SSSS 直通鏈路輔同步信號 Secondary Sidelink Synchronisation Signal
STCH 直通鏈路傳輸信道 Sidelink Traffic Channel
SyncRef UE 同步源終端 the UE as synchronization reference
TDD 時分雙工 Time Division Duplex
TDM 時分復用 Time Division Multiplex
TM 透明模式 Transparent Mode
TTI 傳輸時間間隔 Transmission Time Interval
UE 用戶設備 User Equipment
UL 上行信道 Uplink
UL-SCH 上行鏈路共享信道 Uplink Shared Channel
UM 無確認模式 Unacknowledged Mode
V2I 車輛對基礎設施 Vehicle to Infrastructure
V2N 車輛對網絡 Vehicle to Network
V2P 車輛對行人 Vehicle to Pedestrian
V2V 車輛對車輛 Vehicle to Vehicle
V-RNTI V2X無線網絡臨時標識 V2X RNTI
4 概述
基于LTE的車聯網無線通信技術分為兩種工作方式,一種是終端之間直通鏈路通信方式,其中終端之間的空中接口稱為PC5接口;另一種是終端與基站之間的上/下行鏈路通信方式,其中終端和基站之間的空中接口稱為Uu接口。
第5章規定基于LTE的車聯網無線通信技術的PC5接口技術要求。直通鏈路通信方式包括兩種發送模式,其中直通鏈路發送模式3為資源調度分配,直通鏈路發送模式4為UE自主資源選擇具體定義見YD/T 3340-2018《基于LTE的車聯網無線通信技術總體技術要求》的7.2.2。
第5章文檔結構及文檔內容與3GPP技術規范的對應關系如下。
——5.1規定物理層技術要求。
——5.1.1規定物理信道和調制,對應3GPP TS 36.211(Release 14)。
——5.1.2規定復用和信道編碼,對應3GPP TS 36.212(Release 14)。
——5.1.3規定物理層過程,對應3GPP TS 36.213(Release 14)。
——5.1.4規定物理層測量,對應3GPP TS 36.214(Release 14)。
——5.2規定媒體接入控制(MAC)層技術要求,對應3GPP TS 36.321(Release 14)。
——5.3規定無線鏈路控制(RLC)層技術要求,對應3GPP TS 36.322(Release 14)。
——5.4規定分組數據匯聚協議(PDCP)層技術要求,對應3GPP TS 36.323(Release 14)。
——5.5規定無線資源控制(RRC)層技術要求,對應3GPP TS 36.331(Release 14)。
——5.6規定空閑模式下的UE過程技術要求,對應3GPP TS 36.304(Release 14)。
第6章規定基于LTE的車聯網無線通信技術的Uu接口技術要求。
第6章文檔結構及文檔內容與3GPP技術規范的對應關系如下:
——6.1規定物理層技術要求。
——6.1.1規定物理信道和調制,對應3GPP TS 36.211(Release 14)。
——6.1.2規定復用和信道編碼,對應3GPP TS 36.212(Release 14)。
——6.1.3規定物理層過程,對應3GPP TS 36.213(Release 14)。
——6.1.4規定物理層測量,對應3GPP TS 36.214(Release 14)。
——6.2規定媒體接入控制(MAC)層技術要求,對應3GPP TS 36.321(Release 14)。
——6.3規定無線鏈路控制(RLC)層技術要求,對應3GPP TS 36.322(Release 14)。
——6.4規定分組數據匯聚協議(PDCP)層技術要求,對應3GPP TS 36.323(Release 14)。
——6.5規定無線資源控制(RRC)層技術要求,對應3GPP TS 36.331(Release 14)。
——6.6規定空閑模式下的UE過程技術要求,對應3GPP TS 36.304(Release 14)。
5 PC5接口技術要求
5.1 物理層
5.1.1 物理信道和調制
5.1.1.1 概述
5.1.1.1.1 物理信道
直通鏈路物理信道對應于一組攜帶源自高層信息的資源元素。直通鏈路中包含如下的物理信道。
——直通鏈路物理共享信道,PSSCH。
——直通鏈路物理控制信道,PSCCH。
——直通鏈路物理廣播信道,PSBCH。
如圖l所示,規定了物理直通鏈路信道基帶信號的處理過程。
碼字
層
天線端口
加擾
調制
交換預編碼映射
資源單元
SC-FDMA信號產生
層映射
預編碼
加擾
調制
交換預編碼
資源單元映射
SC-FDMA信號產生
圖1 直通鏈路物理信道基帶信號的處理過程綜述
5.1.1.1.2物理信號
真通鏈路物理信號由物理層使用但不攜帶來源于高層的信息。直通鏈路中包含如下的物理信號:
——解調參考信號;
——同步信號。
5.1.1.2時隙結構和物理資源
5.1.1.2.1無線幀結構
直通鏈路的發送是由長度為Tf的無線幀組成,每個無線幀包含20個長度為Tslot的時隙。一個直通鏈路子幀包含兩個連續的時隙,并從偶數時隙起始。其中Tf=307200×Ts=10ms,Tslot=15360·Ts=0.5ms,Ts=1/(15000×2048)。直通鏈路無線幀結構如圖2所示。
無線幀,Tf=307200Ts=10ms
時隙,Tslot=15360Ts=0.5ms
子幀
圖2 直通鏈路無線幀結構
5.1.1.2.2 資源格
一個直通鏈路物理信道或信號在一個時隙內包含 的子載波和 個SC-FDMA符號。當服務小區和直通鏈路擁有相同的上行頻率,并且按3GPP TS 36.304(Release 14)5.2.3.2滿足S準則,直通鏈路的帶寬為 ,其他情況下的帶寬是一個可配置的數值(5.5定義)。
配置為發送模式3和發送模式4的直通鏈路的PSSCH、PSCCH、PSBCH和同步信號只支持常規循環前綴。
資源格如圖3所示。
上行鏈路時隙Tslot
符號
資源塊
資源單元
子載波
子載波
資源單元(k,l)
圖3 直通鏈路資源格
天線端口定義為在該天線端口發送的一個符號所屬的信道,可以從在同一天線端口發送的另一個符號所屬的信道推斷出來。每一個天線端口對應一個資源格,物理信道或信號發送使用的天線端口見表1。
表1 不同物理信道和信號使用的天線端口
物理信道或信號 天線端口序號
PSSCH 1000
PSCCH 1000
PSBCH 1010
同步信號 1020
5.1.1.2.3 資源元素
在資源格中的每一個元素叫作資源元素,通過在一個時隙中的索引對(k,l)進行唯一指示。其中k=O,…, ,l=O,…, 分別表示在頻域和時域的序號。
在天線端口p上的資源元素(k,l)對應于一個復數 ,在不至于混淆或沒有指定特定的天線端口的情況下,索引pp可省略。
如果一個資源元素沒有用于傳輸物理信道或物理信號, 的值應設為0。
5.1.1.2.4 資源塊
一個資源塊定義為時域上 個連續的SC-FDMA符號和 個連續的頻域子載波, 和 見表2。一個物理資源塊由 個資源元素組成,分別對應時域中的一個時隙和頻域中的180kHz。
表2 物理資源塊參數
配置
常規循環前綴 12 7
擴展循環前綴 12 6
一個時隙內物理資源塊的編號nPRB和資源元素(k,l)的關系如公式(1)所示。
(1)
5.1.1.2.5 資源池
5.1.3定義了子幀池和資源塊池。
對于PSSCH,子幀池中的當前時隙編號為 ,其中i∈{0,1}是在當前直通鏈路子幀 中的當前時隙的編號,其中k等于 的腳注, 在5.1.3.2.1.2為直通鏈路發送模式3定義,在5.1.3.2.1.3為直通鏈路發送模式4定義。
5.1.1.2.6 保護間隔
直通鏈路子幀的最后一個SC-FDMA符號作為保護間隔,并且不能用作直通鏈路的發送。
5.1.1.3 直通鏈路物理共享信道
5.1.1.3.1 加擾
在一個子幀內的PSSCH上發送的比特塊b(0),…,b(Mbit-1)(其中Mbit是發送的比特數)應按3GPP TS 36.211(Release 14)5.3.1進行加擾。
加擾序列應在每個PSSCH子幀起始時根據 進行初始化,其中對于直通鏈路發送模式3和直通鏈路發送模式4, 、p和L由3GPP TS 36.212(Release 14)5.1.1給出, 等于與PSSCH在同一子幀發送的PSCCH的CRC校驗碼的十進制表示。
5.1.1.3.2 調制
按3GPP TS 36.211(Release 14)5.3.2進行調制。PSSCH的調制方式見表3。
表3 PSSCH調制方式
物理信道 調制方式
PSSCH QPSK、16QAM
5.1.1.3.3 層映射
按3GPP TS 36.211(Release 14)5.3.2A進行層映射,假設只有單獨一個天線端口,v=l。
5.1.1.3.4 變換預編碼
按3GPP TS 36.211(Release 14)5.3.3進行變換預編碼,分別將其中的 和 替換成 和 。
5.1.1.3.5 預編碼
按3GPP TS 36.211(Release 14)5.3.3A進行預編碼,應假設只有單獨一個天線端口,v=1。
5.1.1.3.6 物理資源映射
復數符號塊z(0),…,z( )乘以幅度縮放因子βPSSCH以調整發送功率PPSSCH(5.1.3.2.1.5定義),然后從z(0)開始按次序映射至天線端口P上分配給PSSCH發送的物理資源塊。到資源元素(k,l)的映射從子幀的第一個時隙開始,先是索引k的增加,再是索引l的增加,其中資源元素(k,l)是上述用于發送的資源塊中除了參考信號發送之外的資源元素。一個子幀內的最后一個SC-FDMA符號中的資源元素在映射過程中需要被計數但是不能用于發送。
V2X通信不支持直通鏈路跳頻,用于發送的物理資源塊為nPRB=n′VRB,其中n′VRB由5.1.3提供。
5.1.1.4 直通鏈路物理控制信道
5.1.1.4.1 加擾
在一個子幀內的PSCCH上發送的比特塊b(0),…,b(Mbit-1)(其中Mbit是發送的比特數)應按3GPP TS 36.211(Release 14)5.3.1進行加擾。
加擾序列發生器應在每個PSCCH子幀起始時根據cinit=510進行初始化。
5.1.1.4.2 調制
按3GPP TS 36.211(Release 14)5.3.2進行調制。PSCCH的調制方式見表4。
表4 PSCCH調制方式
物理信道 調制方式
PSCCH QPSK
5.1.1.4.3 層映射
按3GPP TS 36.211(Release 14)5.3.2A進行層映射,應假設只有單獨一個天線端口,v=1。
5.1.1.4.4 變換預編碼
按3GPP TS 36.211(Release 14)5.3.3進行變換預編碼,將其中的 和 分別替換成 和 。
5.1.1.4.5 預編碼
按3GPP TS 36.211(Release 14)5.3.3A進行預編碼,假設只有單獨一個天線端口,v=1。
5.1.1.4.6 物理資源映射
復數符號塊z(0),…,z( )乘以幅度縮放因子βPSCCH以調整發送功率PPSCCH(5.1.3.3.1.2定義),然后從z(0)開始按次序映射至天線端口p上分配給PSCCH發送的物理資源塊。到資源元素(k,l)的映射從子幀的第一個時隙開始,先是索引k的增加,再是索引l的增加,其中資源元素(k,l)是上述用于發送的資源塊中除了參考信號發送之外的資源元素。一個子幀內的最后一個SC-FDMA符號的資源元素在映射過程中應被計數但不能用于發送。
5.1.1.5 直通鏈路物理廣播信道
5.1.1.5.1 加擾
在一個子幀內的PSBCH上發送的比特塊b(0),…,b(Mbit-i)(其中Mbit是發送的比特數)應按3GPP TS 36.211(Release 14)5.3.1進行加擾。加擾序列應在每個PSBCH子幀起始時根據 進行初始化。
5.1.1.5.2 調制
按3GPP TS 36.211(Release 14)5.3.2進行調制。PSBCH的調制方式見表5。
表5 PSBCH調制方式
物理信道 調制方式
PSBCH QPSK
5.1.1.5.3 層映射
按3GPP TS 36.211(Release 14)5.3.2A進行層映射,假設只有單獨一個天線端口,v=l。
5.1.1.5.4 變換預編碼
按3GPP TS 36.211(Release 14)5.3.3進行變換預編碼,分別將其中的 和 替換成 和 。
5.1.1.5.5 預編碼
按3GPP TS 36.211(Release 14)5.3.3A進行預編碼,假設只有單獨一個天線端口,v=1。
5.1.1.5.6 物理資源映射
復數符號塊z(0),…,z( )乘以幅度縮放因子βPSBCH以調整發送功率PPSBCH(在5.1.3定義),然后從z(0)開始按次序映射至天線端口P的物理資源塊。PSBCH使用和同步信號相同的資源塊。到資源元素(k,l)的映射從子幀的第一個時隙開始,先是索引k的增加,再是索引l的增加,其中資源元素(k,l)是用于發送PSBCH的資源塊中除了參考信號和同步信號發送之外的資源元素,并且索引k由公式(2)給出。