CB/T 1408 Insulating materials - Insulating materials - Test methods for electric strength includes the following three parts:
——Part 1: Tests at power frequencies;
——Part 2: Additional requirements for tests using direct voltage;
——Part 3: Additional requirements for 1.2/50 μs impulse tests.
This is Part 1 of GB/T 1408.
This part replaces GB/T 1408.1-2006 Insulating materials - Test methods for electric strength - Part 1: Tests at power frequencies. The following main technical changes have been made with respect to GB/T 1408.1-2006:
——the “normative references” are modified (see Clause 2; Clause 2 of 2006 Edition);
——the test requirements of sphere and plate electrodes are added (see Sub-clause 5.2.1.3);
——the test requirements of elastomers are added (see Sub-clause 5.2.6.2.4);
——the “Tests in solid materials” is added (see Sub-clause 7.4);
——the schematic diagram “sphere and plate electrodes” is added [see Figure 1c)];
——Annex B is deleted (see Annex B of Edition 2006).
By translation, this part is identical with IEC 60243-1: 2013 Insulating materials - Test methods for electric strength - Part 1: Tests at power frequencies (Edition 3).
The Chinese documents identical to the normative international documents given in this part are as follows:
——GB/T 1981.2-2009 Varnishes used for electrical insulation - Part2: Methods of test (IEC 60464-1: 2001, IDT)
——GB 2536-2011 Fluids for electrotechnical applications - Unused mineral insulating oils for transformers and switchgear (IEC 60296:2003, MOD)
——GB/T 5471-2008 Plastics - Compression moulding of test specimens of thermoplastic materials (ISO 295: 2004, IDT)
——GB/T 7113.2-2014 Flexible insulating sleeving - Part 2: Methods of test (IEC 60684-2: 2003, MOD)
——GB/T 9352-2008 Plastics - Compression moulding of test specimens of thermoplastic materials (ISO 293: 2004, IDT)
——GB/T 10580-2015 Standard conditions for use prior to and during the testing of solid electrical insulating materials (IEC 60212: 2010, IDT)
——GB/T 15022.2-2007 Resin based reactive compounds used for electrical insulation - Part2: Methods of test (IEC 60455-1: 1998, IDT)
——GB/T 17037.3-2003 Plastics - Injection moulding of test specimens of thermoplastic materials - Part 3: Small plates (ISO 294-3: 2002, IDT)
——GB/T 21218-2007 Specification for unused silicone insulating liquids for electrotechnical purposes (IEC 60836: 2005, IDT)
This part was proposed by China Electrical Equipment Industry Association.
This part is under the jurisdiction of National Technical Committee on Insulating Materials of Standardization Administration of China (SAC/TC 301).
The previous editions of this standard are as follows:
——GB/T 1408-1978, GB/T 1408-1989, GB/T 1408.1-1999, GB/T 1408.1-2006.
Insulating materials - Test methods for electric strength - Part 1: Test at power frequencies
1 Scope
This part of GB/T 1408 provides test methods for the determination of short-time electric strength of solid insulating materials at power frequencies between 48 Hz and 62 Hz.
This standard does not cover the testing of liquids and gases, although these are specified and used as impregnates or surrounding media for the solid insulating materials being tested.
Note: Methods for the determination of breakdown voltages along the surfaces of solid insulating materials are included.
2 Normative references
The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.
ISO 293 Plastics - Compression moulding of test specimens of thermoplastic materials
ISO 294-1 Plastics - Injection moulding of test specimens of thermoplastic materials - Part 1: General principles, and moulding of multipurpose and bar test specimens
ISO 294-3 Plastics - Injection moulding of test specimens of thermoplastic materials - Part 3: Small plates
ISO 295 Plastics - Compression moulding of test specimens of thermosetting materials
ISO 10724 Plastics - Injection moulding of test specimens of thermosetting powder moulding compounds
IEC 60212 Standard conditions for use prior to and during the testing of solid electrical insulating materials
IEC 60296 Fluids for electrotechnical applications - Unused mineral insulating oils for transformers and switchgear
IEC 60455-2 Specification for solvent-less polymerizable resinous compounds used for electrical insulation - Part 2: Methods of lest
IEC 60464-2 Varnishes used for electrical insulation - Part 2: Methods of test
IEC 60684-2 Flexible insulating sleeving - Part 2: Methods of test
IEC 60836 Specifications for unused silicone insulating liquids for electrotechnical purposes
IEC 61099 Insulating liquids - Specifications for unused synthetic organic esters for electrical purposes
3 Terms and definitions
For the purposes of this document, the following terms and definitions apply.
3.1
electric breakdown
severe loss of the insulating properties of test specimens while exposed to electric stress, which causes the current in the test circuit to operate an appropriate circuit-breaker
Note: Breakdown is often caused by partial discharges in the gas or liquid medium surrounding the test specimen and the electrodes which puncture the specimen beyond the periphery of the smaller electrode (or of both electrodes, if of equal diameter).
3.2
flashover
loss of the insulating properties of the gas or liquid medium surrounding a test specimen and electrodes while exposed to electric stress, which causes the current in the test circuit to operate an appropriate circuit-breaker
Note: The presence of carbonized channels or punctures through the specimen distinguishes tests where breakdown occurred, from others where flashover occurred.
3.3
breakdown voltage
3.3.1
(tests with continuously rising voltage) voltage at which a specimen suffers breakdown under the prescribed test conditions
3.3.2
(step-by-step tests) highest voltage which a specimen withstands without breakdown for the duration of the time at that voltage level
3.4
electirc strength
quotient of the breakdown voltage and the distance between the electrodes between which the voltage is applied under the prescribed test conditions
Note: The distance between the test electrodes is determined as specified in Sub-clause 5.5, unless otherwise specified.
4 Significance of the test
Electric strength test results obtained in accordance with this standard are useful for detecting changes or deviations from normal characteristics resulting from processing variables, ageing conditions or other manufacturing or environmental situations. However, they are not intended for use in evaluating the behavior of insulating materials in an actual application.
Measured values of the electric strength of a material may be affected by many factors, including:
a) Condition of test specimens:
1) the thickness and homogeneity of the specimen and the presence of mechanical strain;
2) previous conditioning of the specimens, in particular drying and impregnation procedures;
3) the presence of gaseous inclusions, moisture or other contamination.
b) Test conditions:
1) the frequency, waveform and rate of rise or time of application of the voltage;
2) the ambient temperature, pressure and humidity;
3) the configuration, the dimensions, and thermal conductivity of the test electrodes;
4) the electrical and thermal characteristics of the surrounding medium.
The effects of all these factors shall be considered when investigating materials for which no experience exists. This standard defines particular conditions which give rapid discrimination between materials and which can be used for quality control and similar purposes.
The results given by different methods are not directly comparable but each may provide information on relative electric strengths of materials. The electric strength of most materials decreases as the thickness of the specimen between the electrodes increases and as the time of voltage application increases.
The measured electric strength of most materials is significantly affected by the intensity and the duration of surface discharges prior to breakdown. For designs which are free from partial discharges up to the test voltage, it is very important to know the electric strength without discharges prior to breakdown. However, the methods in this standard are generally not suitable for providing this information.
Materials with high electric strength will not necessarily resist long-term degradation processes such as heat, erosion or chemical deterioration by partial discharges, or electrochemical deterioration in the presence of moisture, all of which may cause failure in service at much lower stress.
5 Electrodes and specimens
5.1 General
The metal electrodes shall be maintained smooth, clean and free from defects at all times. Electrode arrangements for tests on boards and sheets perpendicular to the surface are shown in Figure 1.
Note: This maintenance becomes more important when thin specimens are being tested. Stainless steel electrodes e.g. minimize electrode damage at breakdown.
The leads to the electrodes shall not tilt or otherwise move the electrodes, nor affect the pressure on the specimen, nor appreciably affect the electric field configuration in the neighborhood of the specimen.
When very thin films (for example < 5 μm thick) are to be tested, the standards for those materials shall specify the electrodes and special procedures for handling and specimen preparation.
5.2 Tests perpendicular to the surface of non-laminated materials and normal to laminate of laminated materials
5.2.1 Boards and sheet materials, including pressboards, papers, fabrics and films
5.2.1.1 Unequal electrodes
The electrodes shall consist of two metal cylinders with the edges rounded to give a radius of (3 ± 0.2) mm. One electrode shall be (25 ± 1) mm in diameter and approximately 25 mm high. The other electrode shall be (75 ± 1) mm in diameter and approximately 15 mm high. These two electrodes shall be arranged coaxially within 2 mm as in Figure 1a).
Note: Radii for surface not in contact with the electrode are not critical with respect to test results but should avoid partial discharges in the surrounding medium.
5.2.1.2 Equal diameter electrodes
If a fixture is employed, which accurately aligns upper and lower electrodes within 1.0 mm, the diameter of the lower electrode may be reduced to (25 ± 1) mm, the diameters of the two electrodes differing by no more than 0.2 mm. The results obtained will not necessarily be the same as those obtained with the unequal electrodes of 5.2.1.1.
5.2.1.3 Sphere and plate electrodes
The electrodes shall consist of a metal sphere and a metal plate. The upper electrode shall be a sphere of (20 ± 1) mm in diameter and the lower one is a metal plate of (25 ± 1) mm in diameter with the edge rounded to give a radius of 2.5 mm. The discrepancy of the central axes between upper and lower electrodes shall be within 1 mm (see Figure 1c).
5.2.1.4 Tests on thick sample
When specified, boards and sheets over 3 mm thick shall be reduced by machining on one side to (3 ± 0.2) mm and then tested with the high-potential electrode on the non-machined surface.
When it is necessary in order to avoid flashover or because of limitations of available equipment, specimens may be prepared by machining to smaller thicknesses as needed.
5.2.2 Tapes, films and narrow strips
The electrodes shall consist of two metal rods, each (6 ± 0.1) mm in diameter, mounted vertically one above the other in a jig so that the specimen is held between the faces of the ends of the rods.
The upper and lower electrodes shall be coaxial within 0.1 mm. The ends of the electrodes shall form planes at right angles to their axes, with edge radii of (1 ± 0.2) mm. The upper electrode shall have a mass of (50 ± 2) g and shall move freely in the vertical direction in the jig.
Figure 2 shows an appropriate arrangement. If specimens are to be tested while extended, they shall be clamped in a frame holding them in the required position relative to the assembly shown in Figure 2. Wrapping one end of the specimen around a rotatable rod is one convenient way of achieving the required extension.
To prevent flashover around the edges of narrow tapes, the test specimen may be clamped using strips of film or other thin dielectric material overlapping the edges of the tape. Alternatively, gaskets that surround the electrodes may be used, provided that there is an annular space between electrode and gasket of 1 mm to 2 mm. The distance between the bottom electrode and the specimen (before the top electrode comes in contact with the specimen) shall be less than 0.1 mm.
Note: For testing films see IEC 60674-2.
5.2.3 Flexible tubing and sleeving
To be tested according to IEC 60684-2.
5.2.4 Rigid tubes (having an internal diameter up to and including 100 mm)
The outer electrode shall consist of a band of metal foil (25 ± 1) mm wide. The inner electrode is a closely fitting internal conductor, e.g. rod, tube, metal foil or a packing of metal spheres 0.75 mm to 2 mm in diameter, making good contact with the inner surface. In each case, the ends of the inner electrode shall extend for at least 25 mm beyond the ends of the outer electrode.
Where no adverse effect will result, petroleum jelly may be used for attaching the foil to the inner and outer surfaces.
5.2.5 Tubes and hollow cylinders (having an internal diameter greater than 100 mm)
The outer electrode shall be a band of metal foil (75 ± 1) mm wide and the inner electrode, a disk of metal foil (25 ± 1) mm in diameter, flexible enough to conform to the curvature of the cylinder. The arrangement is shown in Figure 3.
Foreword i
1 Scope
2 Normative references
3 Terms and definitions
4 Significance of the test
5 Electrodes and specimens
6 Conditioning before tests
7 Surrounding medium
8 Electrical apparatus
9 Test procedures
10 Mode of increase of voltage
11 Criterion of breakdown
12 Number of tests
13 Test report
Annex A (Informative) Treatment of experimental data
Bibliography
絕緣材料 電氣強度試驗方法
第1部分:工頻下試驗
1 范圍
GB/T 1408的本部分提出了測定固體絕緣材料工頻(即48 Hz~62 Hz)短時電氣強度的試驗方法。
本部分規定了用液體和氣體作為固體絕緣材料試驗時的浸漬劑或周圍媒質,但不適用于液體和氣體的試驗。
注:本部分包括測定固體絕緣材料表面擊穿電壓的方法。
2 規范性引用文件
下列文件對于本文件的應用是必不可少的。凡是注日期的引用文件,僅注日期的版本適用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改單)適用于本文件。
ISO 293 塑料 熱塑性材料壓塑試樣(Plastics—Compression moulding of test specimens of thermoplastic materials)
ISO 294-1 塑料 熱塑性材料注塑試樣 第1部分:一般原理及多用途模塑件和條形試樣(Plastics—Injection moulding of test specimens of thermoplastic materials—Part 1:General principles,and moulding of multipurpose and bar test specimens)
ISO 294-3 塑料 熱塑性材料注塑試樣 第3部分:小型平板(Plastics—Injection moulding of test specimens of thermoplastic materials—Part 3:Small plates)
ISO 295 塑料 熱固性材料壓塑試樣(Plastics—Compression moulding of test specimens of thermosetting materials)
ISO 10724(所有部分) 塑料 熱固性粉末模塑復合材料注塑試樣(Plastics—Injection moulding of test specimens of thermosetting powder moulding compounds)
IEC 60212 固體電氣絕緣材料試驗時和試驗前采用的標準條件(Standard conditions for use prior to and during the testing of solid electrical insulating materials)
IEC 60296 電工用液體 變壓器和開關設備用的未使用過的礦物絕緣油(Fluids for electrotechnical applications—Unused mineral insulating oils for transformers and switchgear)
IEC 60455-2 電氣絕緣用無溶劑可聚合樹脂復合物規范 第2部分:試驗方法(Specification for solvent-less polymerizable resinous compounds used for electrical insulation—Part 2:Methods of lest)
IEC 60464-2 電氣絕緣用漆 第2部分:試驗方法(Varnishes used for electrical insulation—Part 2:Methods of test)
IEC 60684-2 絕緣軟套管 第2部分:試驗方法(Flexible insulating sleeving—Part 2:Methods of test)
IEC 60836 電工設備用未使用過的硅絕緣液體規范(Specifications for unused silicone insulating liquids for electrotechnical purposes)
IEC 61099 絕緣液體 電工用未使用過的合成有機酯規范(Insulating liquids—Specifications for unused synthetic organic esters for electrical purposes)
3 術語和定義
下列術語和定義適用于本文件。
3.1
電氣擊穿 electric breakdown
當試樣承受電應力作用時,其絕緣性能嚴重損失,由此引起試驗回路電流促使相應的回路斷路器動作。
注:擊穿通常是由試樣和電極周圍的氣體或液體媒質中的局部放電引起,并使得小電極(或兩電極,如果兩電極直徑相同的話)邊緣的試樣遭到破壞。
3.2
閃絡 flashover
在電應力作用下,試樣和電極周圍的氣體或液體媒質絕緣性能喪失,由此引起的試驗回路電流促使響應的回路斷路器動作。
注:出現碳化通道或試樣內穿孔,則表明發生擊穿,否則為閃絡。
3.3
擊穿電壓 breakdown voltage
3.3.1
(在連續升壓試驗中)在規定的試驗條件下,試樣發生擊穿時的電壓。
3.3.2
(在逐級升壓試驗中)試樣承受住的最高電壓,在該電壓水平下,整個時間內試樣不發生擊穿。
3.4
電氣強度 electirc strength
在規定的試驗條件下,擊穿電壓與施加電壓的兩電極之間距離的商。
注:除另有規定外,建議按5.5規定測定兩試驗電極之間的距離。
4 試驗意義
按本部分得到的電氣強度試驗結果,能用來檢測由于工藝變更、老化條件或其他制造或環境情況而引起的性能相對于正常值的變化或偏離,一般不推薦用于直接確定在實際應用中的絕緣材料的性能狀態。
材料的電氣強度測量值可能受以下多種因素影響,包括:
a) 試樣狀態:
1) 試樣厚度和均勻性,以及是否存在機械應力;
2) 試樣的預處理,特別是干燥和浸漬過程;
3) 是否存在氣隙、水分或其他雜質。
b) 試驗條件:
1) 施加電壓的頻率、波形和升壓速度或加壓時間;
2) 環境溫度、氣壓和濕度;
3) 電極形狀、電極尺寸及其導熱系數;
4) 周圍媒質的電、熱特性。
在研究還沒有實際經驗的新材料時,應該考慮到所有這些有影響的因素。本部分規定了一些特定的條件,以便迅速地判別材料,并可用以進行質量控制和類似的目的。
用不同方法得到的結果是不能直接相比的,但每一結果可提供關于材料電氣強度的資料。大多數材料的電氣強度隨著電極間試樣厚度的增加而減小,隨電壓施加時間的增加而減小。
大多數材料測得的電氣強度受到擊穿前的表面局部放電強度和時間的顯著影響。為設計在升壓直到試驗電壓過程中不發生局部放電的電氣設備,應知道材料擊穿前無放電的電氣強度,但本部分的方法通常不適用提供這方面資料。
具有高電氣強度的材料未必能耐長時期的劣化過程,例如熱老化、腐蝕或由于局部放電而引起化學腐蝕或潮濕條件下的電化學腐蝕,而所有這些過程都可導致材料在運行中于低得多的電場強度下失效。
5 電極和試樣
5.1 通則
金屬電極應始終保持光滑、清潔和無缺陷。對板材和片材進行試驗時,電極裝置應垂直于試樣表面見圖1。
注:當對薄試樣進行試驗時,電極的維護尤其重要。為了在擊穿時盡量減小電極損傷,優先采用不銹鋼電極。
接到電極上的導線既不應使得電極傾斜或其他移動或使得試樣上壓力變化,也不應使得試樣周圍的電場分布受到顯著影響。
試驗非常薄的薄膜(例如,厚度小于5.0 μm)時,這些材料的產品標準應規定所用的電極、操作的具體程序和試樣的制備方法。
5.2 垂直于非層疊材料表面和垂直于層疊材料層向的試驗
5.2.1 板材和片狀材料(包括紙板、紙、織物和薄膜)
5.2.1.1 不等直徑電極
電極由兩個金屬圓柱體組成,其邊緣倒圓成半徑為(3.0±0.2)mm的圓弧。其中一個電極的直徑為(25.0±1.0)mm,高約25.0 mm;另一個電極為直徑(75.0±1.0)mm,高約15.0 mm。兩個電極同軸,誤差在2.0 mm內,如圖1a)所示。
注:未與電極接觸部分的試樣半徑對結果不是至關重要,但應避免其在周圍媒質中的局部放電。
5.2.1.2 等直徑電極
如果使用一種可使上下電極準確對中(誤差在1.0 mm內)放置的裝置,則下電極直徑可減小到(25.0±1.0)mm,兩電極直徑差不大于0.2 mm,如圖1b)所示。這樣測得的結果未必同5.2.1.1不等直徑電極測得的結果相同。
5.2.1.3 球板電極
電極由一個球體和一個金屬板組成,其中上電極為直徑(20.0±1.0)mm的球體,下電極為直徑(25.0±1.0)mm的金屬板,其邊緣倒圓成半徑為2.5 mm的圓弧。上下電極同軸,誤差在1.0 mm內,如圖1c)所示。
5.2.1.4 厚樣品的試驗
當有規定時,厚度超過3.0 mm的板材和片材應單面機械加工至(3.0±0.2)mm的厚度。然后,試驗時將高壓電極置于未加工的面上。
為了避免閃絡或受現有設備限制,必要時可根據需要,通過機械裝置將試樣厚度加工的更薄。
5.2.2 帶、薄膜和窄條
兩個電極為兩根金屬棒,每根直徑為(6.0±0.1)mm,垂直安裝在夾具內,使一個電極在另一個電極上面,試樣夾在棒的兩個端面之間。
上下電極應同軸,誤差在0.1 mm內。兩電極端面應與其軸向相垂直,端面的邊緣半徑為(1.0±0.2)mm。上電極質量為(50.0±2.0)g且應能在夾具內的垂直方向自由移動。
圖2示出了一種合適的裝置。如果需要使試樣在拉伸狀態下進行試驗,則應將試樣夾在架子中,使試樣放在如圖2所示的規定的位置上。為達到所需的拉伸,方便的方法是將試樣一端纏在旋轉的圓棒上。
為了防止窄條邊緣發生閃絡,可用薄膜或其他薄的絕緣材料條搭蓋在窄條邊緣并夾住試樣。此外,電極周圍還可以采用防弧密封圈,只要電極和密封圈之間留有1.0 mm~2.0 mm的環狀間隙。下電極與試樣之間的間隙(在上電極與試樣接觸之前)應小于0.1 mm。
注:對薄膜的試驗,見IEC 60674-2。
5.2.3 軟管和軟套管
按IEC 60684-2進行試驗。
5.2.4 硬管(內徑100 mm及以下)
外電極是(25.0±1.0)mm寬的金屬箔帶。內電極是與內壁緊配合的導體,例如圓棒、管、金屬箔或充填直徑0.75 mm~2.0 mm的金屬球,使與管材的內表面有良好接觸。內電極的每端應至少伸出外電極25 mm。
當無不利影響時,可用凡士林將金屬箔貼到試樣的內外表面。
5.2.5 管類和空心圓筒(內徑大于100 mm)
外電極是(75.0±1.0)mm寬的金屬箔帶,內電極是直徑(25.0±1.0)mm的圓形金屬箔,金屬箔應相當柔軟使之足以適應圓筒的曲率,裝置如圖3所示。
5.2.6 澆注及模塑材料
5.2.6.1 澆注材料
按IEC 60455-2制樣和試驗。
5.2.6.2 模塑材料
5.2.6.2.1 通則
應用一對球電極,每個球的直徑為(20.0±0.1)mm,在排列電極時,要使得它們共有的軸線與試樣平面垂直(見圖4),如果試樣是彈性體,應按5.2.1.3中的球板電極[見圖1c)]。
5.2.6.2.2 熱固性材料
厚度為(1.0±0.1)mm的試樣,可按ISO 295壓縮模塑成型或按ISO 10724注塑成型,其側面尺寸應足以防止閃絡(見5.4)。
如果不能應用(1.0±0.1)mm厚的試樣,則可用(2.0±0.2)mm厚的試樣。
5.2.6.2.3 熱塑性材料
應用按ISO 294-1和ISO 294-3中D1型注塑成型試樣,尺寸為60 mm×60 mm×1 mm。如果該尺寸不足以防止閃絡(見5.4)或按有關材料標準規定要求用壓縮模塑成型試樣,此時應按ISO 293壓塑成型的平板試樣,其直徑至少100.0 mm,厚(1.0±0.1)mm。
注塑或壓塑的條件見有關材料標準。如果沒有可適用的材料標準,則這些條件應經供需雙方協商。
5.2.6.2.4 彈性體
應用厚度為(1.0±0.1)mm的試樣,這些試樣按標準條件成型,其側面尺寸應足以防止閃絡(見5.4)。如果沒有有效的標準,則這些條件應經供需雙方協商。
對于電極裝置,應使用5.2.1.3中的球板電極[見圖1c)]。至于硬度低的彈性體,例如硅橡膠,應分別使用適當的澆注材料,作為填充材料或周圍媒質。
5.2.7 硬質成型件
對不能將其置于平面電極間的成型絕緣件,應采用對置的等直徑球電極。通常用作這類試驗的電極直徑為12.5 mm或20.0 mm(見圖5)。
5.2.8 清漆
按IEC 60464-2進行試驗。
5.2.9 充填膠
電極是兩個金屬球,每個球的直徑12.5 mm~13.0 mm。水平同軸放置,除另有規定外,彼此相隔(1.0±0.1)mm并都嵌入填充膠內。應注意避免出現空隙,特別避免兩電極間的空隙。由于用不同的電極距離得到的結果不能直接相比,因此應在材料規范和試驗報告中注明間隙長度。
5.3 平行于非疊層材料表面和平行于疊層材料層向的試驗
5.3.1 通則
如不必區分擊穿是貫穿試樣的擊穿還是沿試樣表面的擊穿,則可使用5.3.2或5.3.3的電極,而5.3.2的電極應被優先采用。
當要求防止表面破壞時,應采用5.3.3的電極。
5.3.2 平行板電極
5.3.2.1 板材和片材
試驗板材和片材時,試樣厚度為被試材料厚,試樣為長方形,長(100±2)mm,寬(25.0±0.2)mm。試樣間長向側面應切成垂直于材料表面的兩個平行平面。試樣夾在金屬平行板之間,兩金屬板相距25 mm,厚度不小于10 mm,作為兩電極,電壓施加在金屬板上。對于薄材料可以用兩個或3個試樣恰當地放置,即使它們的長向側面形成合適的角度,以支撐上電極。電極應有足夠大的尺寸,以覆蓋試樣邊緣至少超過試樣各邊15 mm,要注意保證試樣兩側面的整個面積均與電極良好的接觸。電極的邊緣應適當倒圓,半徑為3 mm~5 mm,以避免電極的邊與邊之間的閃絡(見圖6)。
如果現有設備不能使試樣擊穿,則可以將試樣寬度減少至(15.0±0.2)mm或(10.0±0.2)mm。試樣寬度的這種減少,須在報告中予以特別說明。
這種電極僅適用于厚度至少為1.5 mm的硬質材料的試驗。
5.3.2.2 管材和圓筒
試驗管材和圓筒時,試樣應為一個完整的環或圓弧長度為100 mm的一段環,其軸向長度為(25±0.2)mm。試樣兩端應加工成垂直于管或圓筒軸的兩個平行面。將試樣放在兩平行板之間按5.3.2.1所述的板材和片材的試驗法進行試驗。必要時可用2個~3個試樣來支撐上電極。電極應有足夠大的尺寸以使電極覆蓋試樣至少超過試樣各邊15 mm,應保證試樣兩側面的整個面積均與電極良好接觸。
5.3.3 錐銷電極
在試樣上垂直試樣表面鉆兩個相互平行的孔,兩孔中心距離為(25±1)mm。兩孔的直徑這樣來確定:用錐度約2%的鉸刀擴孔后每個孔的較大的一端的直徑不小于4.5 mm而不大于5.5 mm。
鉆孔的兩孔完全貫穿試樣,或如果試樣是大管子,則孔僅貫穿一個管壁,并在孔的整個長度上用鉸刀擴孔。
在鉆孔和擴孔時,孔周圍的材料不應有任何形式的損壞,如劈裂、破碎或碳化。
用作電極的錐形銷的錐度為(2.0±0.02)%并將其壓入,但不要錘打兩孔,以使它們能緊密配合,并突出試樣每一面至少2 mm(見圖7)。
這類電極僅適用于試驗厚度至少為1.5 mm的硬質材料。
5.3.4 平行圓柱形電極
對厚度大于15 mm的具有高電氣強度的試樣進行試驗時,將試樣切成100 mm×50 mm,并如圖8所示鉆兩個孔,每個孔的直徑比圓柱形電極的直徑大0.1 mm或以下。圓柱形電極直徑為(6.0±0.1)mm,并有半球形端部。每個孔的底部是半球形以便與電極端配合,使得電極端部和孔的底部之間間隙在任何點都不超過0.05 mm。如果在材料規范中沒有另外規定,則兩孔沿其長度的側面相距應是(10±1)mm,每孔應延伸到離相對的表面(2.25±0.25)mm以內。兩種任選形式的通風電極如圖8所示。當使用帶小槽的電極時,這些小槽的位置應與電極間的間距正好相反。
5.4 試樣
除了上述各條中已敘述過的有關試樣的情況外,通常還要注意下面幾點:
a) 制備固體材料試樣時,應注意與電極接觸的試樣兩表面要平行,而且應盡可能平整光滑;
b) 對于垂直于材料表面的試驗,要求試樣有足夠大的面積以防止試驗過程中發生閃絡;
c) 對于垂直于材料表面的試驗,不同厚度的試樣其結果不能直接相比(見第4章)。
5.5 電極間距離
用來計算電氣強度的兩電極間距離值應為下列之一(按被試材料的規定):
a) 標稱厚度或兩電極間距離(除非另有規定,一般均采用此值);
b) 對于平行于表面的試驗,為試樣的平均厚度或兩電極間的距離;
c) 在每個試樣上擊穿點附近直接測得的厚度或兩電極間的距離。
6 試驗前的條件處理
絕緣材料的電氣強度隨溫度和水分含量而變化。若被試材料已有規定,則應遵循該規定。除非另有商定條件,試樣應在溫度為(23±2)℃、相對濕度為(50±5)%條件下,即在IEC 60212規定的標準環境大氣中處理不少于24 h。
7 周圍媒質
7.1 通則
材料應在為防止閃絡而選取的周圍媒質中試驗。符合IEC 60296的變壓器油、IEC 60836的硅液體、IEC 61099的酯液體或適當的澆注材料可以作為適用的媒質。且周圍媒質在試驗時與材料不應有顯著的相互作用,如在試驗過程引起膨脹。
對擊穿電壓值相對較低的試樣,可在空氣中試驗,特別是如果要在高溫下進行試驗,應注意即使在中等的試驗電壓下,在電極邊緣的放電也會對測試值造成很大影響。
如果試圖在另一種媒質中對某種材料的性能進行試驗評定,則可以應用這種媒質。
選取對試驗材料危害影響最小的媒質。
周圍媒質對試驗結果可能有很大影響,特別是對易吸收的材料,如紙和紙板,因此應在試樣制備程序中確定全部的必要步驟(例如,干燥和浸漬),以及試驗過程中周圍媒質的狀態。
須有足夠的時間讓試樣和電極達到所要求的溫度,但有些材料會因長期處于高溫而受到影響。
7.2 高溫空氣中試驗
在高溫空氣中試驗時,可在任何設計合理的烘箱中進行,烘箱要有足夠大的體積來容納試樣和電極,使它們在試驗時不發生閃絡。烘箱應裝有空氣循環裝置使試樣周圍的溫度在規定溫度的±2℃內大體上保持均勻,把溫度計、熱電偶或其他測量溫度的裝置按實際可能,放在試驗點附近測量溫度。
7.3 液體中試驗
當試驗須在絕緣液體中進行時,應保證絕緣液體有足夠的電氣強度以免發生閃絡。在具有比變壓器油更高的相對介電常數的液體中試驗的試樣,會出現比變壓器油中試驗時測得到更高的電氣強度。變壓器油或其他液體的雜質含量,有可能會影響測得的電氣強度。
高溫下的試驗可以在烘箱內的盛液容器中進行(見7.1),也可在以絕緣油作為熱傳遞介質的恒溫控制的油浴中進行。在這種情況下,應采用合適的液體循環措施,以使試樣周圍的溫度大致均勻,并保持在規定溫度的±2℃內。
7.4 固體材料中試驗
對于板狀的軟質彈性體試樣,應使用適當的澆注材料,該澆注材料最好在室溫下固化,且介電常數與試驗彈性體的相似。在澆注過程中,應避免產生空隙,尤其是在通過真空處理的圓筒狀電極和試驗板之間的容積內。該澆注材料對電極和試驗板表面應具有足夠的粘結力。
對于有機硅彈性體,可以是低黏度的硅橡膠,采用雙組分室溫硫化的方式進行固化。
8 電氣設備
8.1 電壓源
用一個可變低壓正弦電源供給一個升壓變壓器來獲得試驗電壓。變壓器及其電源和它的調節裝置應具有如下特性。
在回路中有試樣的情況下,對等于或小于試樣擊穿電壓的所有電壓,試驗電壓的峰值與均方根(r.m.s)值之比為 即(1.34~1.48)。
電源的容量應足夠大使之在發生擊穿之前滿足上述要求。對于大多數材料,在使用推薦的電極的情況下,通常40 mA的輸出電流容量已足夠。對于大多數試驗來說,電源容量范圍為:對于10 kV及以下的小電容試樣的試驗,其容量為0.5 kVA;對于試驗電壓為100 kV以下者則為5 kVA。
可變低壓電源調節裝置應能使試驗電壓平滑、均勻地變化,無過沖現象。當施加一個符合第8章規定的電壓時,如用一個自耦調節器,所產生的遞增的增量不應超過預期擊穿電壓的2%。
對短時試驗或快速升壓試驗,最好使用馬達驅動調節裝置。
為了保護電源不致損壞,應裝有一個裝置使在試樣擊穿的幾個周期以內切斷電源。這個裝置可以由一個接在高壓回路中的電流敏感元件組成。
為了限制在擊穿時南電流或電壓沖擊引起的損傷,要求將一個具有合適值的電阻器與電極串聯,電阻值的大小應取決于電極所允許的損傷程度。
應用阻值很高的電阻器可能會導致測得的擊穿電壓要比應用阻值低的電阻器測得的擊穿電壓值高。
8.2 電壓測量
按等效均方根值記錄電壓值。較好的方法是用一塊峰值電壓表并將其讀數除以 。電壓測量回路的總誤差應不超過測得值的5%,該誤差中包括了由于電壓表的響應時間所引起的誤差。在所用的任何升壓速率下,該響應時間引起的誤差應大于擊穿電壓的1%。
采用符合上述要求的電壓表來測量施加到電極上的電壓。最好將它直接接到電極上,也可通過分壓器或電壓互感器接到電極上。如果使用升壓變壓器的電位線圈來測量電壓,則施加到電極上的電壓的指示正確度應不受升壓變壓器負載和串聯電阻器的影響。
希望在擊穿后能在電壓表上保留最大試驗電壓的讀數值,從而正確地讀出并記錄擊穿電壓,但指示器應對在擊穿時發生的瞬變現象不敏感。