This standard is developed in accordance with the rules given in GB/T 1.1-2009.
This standard replaces GB/T 19073-2008 Gearbox of wind turbine generator systems. The following main technical differences have been made with respect to GB/T 19073-2008:
— The standard name is changed;
— The referenced ISO standards and DIN standards are added to the “Normative reference” (see Clause 2);
— “Terms, definitions and conventions” is added (see Clause 3);
— “Symbols and abbreviations” is added (see Clause 4);
— “Design for reliability” is added (see Clause 5);
— “Drivetrain operating conditions and loads” is added (see Clause 6);
— “Test methods and inspection rules” is replaced by “Design verification” (see Clause 8; Clause 4 of Edition 2008);
— “Operation, service and maintenance requirements” replaces “Installation and use of gearbox in the unit”, “Signs and operating instructions” and “Packaging, transportation and storage” (see Clause 9; Clauses 5 to 7 of Edition 2008);
— “Examples of drivetrain interfaces and loads specifications” replaces “Guide for strength evaluation of main parts of gearbox” (see Annex A; Annex A of Edition 2008);
— “Gearbox design and manufacturing considerations” replaces “Lubrication and monitoring” (see Annex B; Annex B of Edition 2008);
— “Bearing design considerations” replaces “Bearing selection and configuration forms” and “Bearing stress calculation” (see Annex C; Annex C of Edition 2008);
— “Considerations for gearbox structural elements” replaces “Bearing stress calculation” (see Annex D; Annex D of Edition 2008);
— “Recommendations for lubricant performance in wind turbine” replaces “Quality assurance” (see Annex E; Annex E of Edition 2008);
— “Design verification documentation” is added (see Annex F);
— “Bearing calculation documentation” is added (see Annex G).
This standard is identical to IEC 61400-4: 2012 Wind turbines — Part 4: Design requirements for wind turbine gearboxes (English version) by means of translation.
The Chinese documents consistent and corresponding with the normative international documents in this standard are as follows:
— GB/T 3505-2009 Geometrical product specifications (GPS) — Surface texture: Profile method — Terms definitions and surface texture parameters (ISO 4287:1997, IDT)
— GB/T 4662-2012 Rolling bearings — Static load ratings (ISO 76:2006, IDT)
— GB/T 6379.2-2004 Accuracy (trueness and precision) of measurement methods and results — Part 2: Basic method for the determination of repeatability and reproducibility of a standard measurement method (ISO 5725-2:1994, IDT)
— GB/T 6404.1-2005 Acceptance code for gear units — Part 1: Test code for airborne sound (ISO 8579-1:2002, IDT)
— GB/Z 6413.1-2003 Calculation method of bonding bearing capacity of cylindrical gears, bevel gears and hypoid gears Part 1: Flash temperature method (ISO/TR 13989-1:2000, IDT)
— GB/Z 6413.2-2003 Calculation of scuffing load capacity of cylindrical, bevel and hypoid gears — Part 2:Integral temperature method (ISO/TR 13989-2:2000, IDT)
— GB/T 10095.1-2008 Cylindrical gears — System of accuracy — Part 1: Definitions and allowable values of deviations relevant to corresponding flanks of gear teeth (ISO 1328-1:1995, IDT)
— GB/T 10610-2009 Geometrical product specifications (GPS) — Surface texture: Profile method — Rules and procedures for the assessment of surface texture (ISO 4288-1:1996, IDT)
— GB/T 14039 2002 Hydraulic Fluid Power — Fluids — Method for Coding the Level of Contamination by Solid Particles (ISO 4406:1999, MOD)
— GB/T 17879-1999 Gears — Surface temper etch inspection after grinding (ISO 14104: 1995, IDT)
— GB/Z 18620.3-2008 Cylindrical gears — Code of inspection practice — Part 3: Recommendations relative to gear blanks shaft centre distance and parallelism of axes (ISO/TR 10064-3:1996, IDT)
— GB/Z 19414-2003 Enclosed gear drives for industrial applications (ISO/TR 13593:1999, IDT)
— GB/Z 25426-2010 Wind turbine generator systems measurement of mechanical loads (IEC/TS 61400-13:2001, MOD)
— GB/T 31517-2015 Design requirements for offshore wind turbines (IEC 61400-3:2009, IDT)
The following editorial modifications are made in this standard:
— Modification of the standard name;
— Correction of missing references to ISO 10474, EN 10204, ISO 8579-1 and ISO 8579-2 in Clause 2.
This standard was proposed by the China Machinery Industry Federation.
This standard is under the jurisdiction of the National Technical Committee on Wind Power Machinery of Standardization Administration of China (SAC/TC 50).
The previous editions of this standard are as follows:
— GB/T 19073-1993 and GB/T 19073-2008.
Wind turbine — Design requirements for gearbox
1 Scope
This standard is applicable to enclosed speed increasing gearboxes for horizontal axis wind turbine drivetrains with a power rating in excess of 500 kW. This standard applies to wind turbines installed onshore or offshore.
This standard provides guidance on the analysis of the wind turbine loads in relation to the design of the gear and gearbox elements.
The gearing elements covered by this standard include such gears as spur, helical or double helical and their combinations in parallel and epicyclic arrangements in the main power path. This standard does not apply to power take off gears (PTO).
The standard is based on gearbox designs using rolling element bearings. Use of plain bearings is permissible under this standard, but the use and rating of them is not covered.
Also included is guidance on the engineering of shafts, shaft hub interfaces, bearings and the gear case structure in the development of a fully integrated design that meets the rigours of the operating conditions.
Lubrication of the transmission is covered along with prototype and production testing. Finally, guidance is provided on the operation and maintenance of the gearbox.
2 Normative references
The following referenced documents are indispensable for the application of this standard. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.
GB/T 3480.5-2008 Calculation of load capacity of spur and helical gears — Part 5: Strength and quality of materials (ISO 6336-5:2003, IDT)
GB/T 6391-2010 Rolling bearings — Dynamic load ratings and rating life (ISO 281:2007, IDT)
GB/T 18451.1-2012 Wind turbine generator systems — Design requirements (IEC 61400-1:2005, IDT)
GB/T 19936.1-2005 Gears — FZG test procedures — Part1: FZG test method A/8.3/90 for relative scuffing load-carrying capacity of oils (ISO 14635-1:2000, IDT)
GB/T 24611-2009 Rolling bearings — Damage and failures — Terms, characteristics and causes (ISO 15243:2004, IDT)
IEC 60050 (All Parts) International electrotechnical vocabulary, quoted from http://electrotedia.org.
IEC 61400-3 Wind turbines — Part 3: Design requirements for offshore wind turbines
IEC/TS 61400-13:2001 Wind turbine generator systems — Part 13: Measurement of mechanical loads
IEC 61400-22:2010 Wind turbines — Part 22: Conformity testing and certification
ISO 76 Rolling bearings — Static load ratings
ISO 683 (All Parts) Heat-treatable steels, alloy steels and free-cutting steels
ISO 1328-1 Cylindrical gears — ISO system of accuracy — Part 1: Definitions and allowable values of deviations relevant to corresponding flanks of gear teeth
ISO 4287 Geometrical Product Specifications (GPS) — Surface texture: Profile method — terms, definitions and surface texture parameters
ISO 4288 Geometrical Product Specifications (GPS) — Surface texture: Profile method — rules and procedures for the assessment of surface texture
ISO 4406 Hydraulic fluid power — Fluids — Method for coding the level of contamination by solid particles
ISO 5725-2 Accuracy (trueness and precision) of measurement methods and results — Part 2: Basic methods for the determination of repeatability and reproducibility of a standard measurement method
ISO 6336 (All Parts) Calculation of load capacity of spur and helical gears
ISO 6336-1:2006 Calculation of load capacity of spur and helical gears — Part 1: Basicprinciples, introduction and general influence factors
ISO 6336-2:2006 Calculation of load capacity of spur and helical gears — Part 2: Calculation of surface durability (pitting)
ISO 6336-3:2006 Calculation of load capacity of spur and helical gears — Part 3: Calculation of tooth bending strength
ISO 6336-6:2006 Calculation of load capacity of spur and helical gears — Part 6: Calculation of service life under variable load
ISO 8579-1 Acceptance code for gear units — Part 1: Test code for airborne sound
ISO 8579-2 Acceptance code for gears — Part 2: Determination of mechanical vibrations of gear units during acceptance testing
ISO/TR 10064-3 Cylindrical gears — Code of inspection practice — Part 3: Recommendations relative to gear blanks, shaft centre distance and parallelism of axes
ISO 10474 Steel and steel products — Inspection documents
ISO 12925-1 Lubricants, industrial oils and related products (class L). Family C (Gears) — Part 1: Specifications for lubricants for enclosed gear systems
ISO/TR 13593 Enclosed gear drives for industrial applications
ISO/TR 13989-1 Calculation of scuffing load capacity of cylindrical, bevel and hypoid gears — Part 1: Flash temperature method
ISO/TR 13989-2 Calculation of scuffing load capacity of cylindrical, bevel and hypoid gears — Part 2: Integral temperature method
ISO 14104 Gears — Surface temper etch inspection after grinding
ISO/TS 16281:2008 Rolling bearings — Methods for calculating the modified reference rating life for universally loaded bearings
AGMA 9005 Industrial gear lubrication
ANSI/AGMA 925-A02 Effect of lubrication on gear surface distress
ANSI/AGMA 6001-E10 Design and selection of components for enclosed gear drives
ANSI/AGMA 6123 Design manual for enclosed epicyclic gear drives
ASTM E1049-85 Standard practices for cycle counting in fatigue analysis
DIN 471 Circlips (retaining rings) for shafts: Normal type and heavy type
DIN 472 Circlips (retaining rings) for bores: Normal type and heavy type
DIN 743-2000 Shafts and axles, calculations of load capacity, Parts 1, 2, 3
DIN 3990-4 Calculation of load capacity of cylindrical gears: calculation of scuffing load capacity
DIN 6885-2 Parallel Key Geometries
DIN 6892 Mitnehmerverbindungen ohne Anzug — Passfedern — Berechnung und Gestaltung)
DIN 7190 Interference fits — Calculation and design rules
DIN 51517-3 Lubricants: Lubricating oils — Part 3: Lubricating oils CLP; Minimum requirements
EN 10204:2004 Metallic products—Types of inspection documents
EN 12680-3:2003 Ultrasonic examination—Spheroidal graphite cast iron castings
3 Terms, definitions and conventions
3.1 Terms and definitions
For the purposes of this document, the terms and definitions given in GB/T 18451.1-2012 and IEC 60050-415 and the following apply.
Note: The definitions in this standard take precedence.
3.1.1
bearing manufacturer
legal entity supplying bearings for the wind turbine gearbox, and who is responsible for the design and the application engineering of the bearing
Note 1 to entry: Typically, the bearing supplier will also manufacture the bearing.
3.1.2
certification body
entity that conducts certification of conformity of the wind turbine gearbox in accordance with IEC 61 400-22
3.1.3
characteristic load
load value having a prescribed probability of not being exceeded
Note 1 to entry: See also 3.1.5, design load.
3.1.4
design lifetime
specified duration for which strength verification shall be performed
Note 1 to entry: Some serviceable components and wear parts may have a lower design lifetime than the one specified for the entire gearbox.
3.1.5
design load
load for which the strength of any component has to be documented
Note 1 to entry: It consists of the characteristic load multiplied by the appropriate partial safety factor for load.
Note 2 to entry: See also GB/T 18451.1-2012 and Clause 6.
3.1.6
double-row bearings
rolling bearings with two rows of rolling elements
3.1.7
equivalent load
load which when repeated for a specified number of cycles causes the same damage as the actual load variation if a specified life exponent applies
Note 1 to entry: When applied to load ranges, the equivalent load is not equal to the average load value of all load cycles.
3.1.8
extreme load
that design load from any source, either operating or non-operating, that is the largest absolute value of the respective load component
Note 1 to entry: This component can be a force, a moment, a torque or a combination of these.
3.1.9
gearbox manufacturer
the entity responsible for designing the gearbox, and specifying manufacturing requirements for the gearbox and its components
Note 1 to entry: In reality, several legal entities may be involved in this process, which is not further reflected in this standard.
3.1.10
interface
defined boundary of the gearbox that is either a physical mount to another wind turbine subcomponent or a path of exchange such as control signals, hydraulic fluid, or lubricant
3.1.11
load reserve factor
LRF
ratio of the design load to the maximum allowable load on a specific component
Note 1 to entry: LRF can be determined separately for both the ultimate and fatigue strength calculation.
3.1.12
local failure
failure which occurs when at a critical location, the maximum allowable strain is exceeded
3.1.13
locating bearing fixed bearing
bearing supporting axial forces in both directions
3.1.14
lubricant supplier
legal entity supplying lubricants for the wind turbine gearbox through either the wind turbine manufacturer, the gearbox manufacturer, or the wind turbine owner
Note 1 to entry: The lubricant supplier is responsible for the performance of the lubricant and the blending specifications, but will not necessarily produce any of the components, or blend the final product.
3.1.15
maximum operating load
highest load determined by the design load cases used in fatigue analysis as defined in GB/T 18451.1-2012, including partial load safety factor as applicable in accordance with GB/T 18451.1-2012
3.1.16
nacelle
turbine structure above the tower that holds the drivetrain, generator, other subcomponents, and parts of the controls and actuation systems
3.1.17
non-locating bearing
floating bearing
bearing supporting only radial load
3.1.18
paired bearings
two bearings of the same type at the same location
Note 1 to entry: These can be arranged so that their radial capacities complement and their axial capacities are opposite (e.g., two TRB or two ACBB in face-to-face or back-to-back arrangement), or they can be two bearings in tandem to increase both radial and axial load carrying capacities (see C.7).
3.1.19
rainflow matrices
representation of fatigue loads using a two dimensional matrix containing counts of cycle occurrence within sub-ranges of cyclic means and amplitudes
Note 1 to entry: See A.4.3
3.1.20
time series
set of time sequences of loads, describing different operational regimes of the wind turbine
Note 1 to entry: These time series together with their corresponding occurrences specify the load history during the entire design lifetime.
3.1.21
wind turbine manufacturer
entity responsible for specifying the requirements for the gearbox designed in accordance with this standard
Note 1 to entry: Typically, the wind turbine manufacturer will design, manufacture and market the wind turbine.
3.1.22
wind turbine owner
entity who purchases and is responsible for operating the wind turbine
Note 1 to entry: In reality, the owner may contract different legal entities to operate, service and maintain the wind turbine. This distinction is not further reflected in this standard.
3.2 Conventions
3.2.1 Bearing position designations
The following abbreviations can be used to define bearing positions (shaft designations are defined in 3.2.2):
● RS: rotor side (normally upwind);
● GS: generator side (normally downwind).
In case of paired bearings the following can be used:
● IB: inboard (pointing inwards related to the shaft);
● OB: outboard (pointing outwards related to the shaft)
3.2.2 Shaft designations — examples for typical wind turbine gearbox architecture
Figure 1 shows the designations of shafts in 3-stage parallel shaft gearboxes. In 4-stage gearboxes, the intermediate shafts are called “low speed intermediate shaft”, “medium speed intermediate shaft”, and “high speed intermediate shaft”.
Foreword I
1 Scope
2 Normative references
3 Terms, definitions and conventions
3.1 Terms and definitions
3.2 Conventions
4 Symbols and abbreviations
4.1 Symbols
4.2 Abbreviations
5 Design for reliability
5.1 Design lifetime and reliability
5.2 Design process
5.3 Documentation
5.4 Quality plan
6 Drivetrain operating conditions and loads
6.1 Drivetrain description
6.2 Deriving drivetrain loads
6.3 Results from wind turbine load calculations
6.4 Operating conditions
6.5 Drivetrain analysis
7 Gearbox design, rating, and manufacturing requirements
7.1 Gearbox cooling
7.2 Gears
7.3 Bearings
7.4 Shafts, keys, housing joints, splines and fasteners
7.5 Structural elements
7.6 Lubrication
8 Design verification
8.1 General
8.2 Test planning
8.3 Workshop prototype testing
8.4 Field test
8.5 Production testing
8.6 Robustness test
8.7 Field lubricant temperature and cleanliness
8.8 Bearing specific validation
8.9 Test documentation
9 Operation, service and maintenance requirements
9.1 Service and maintenance requirements
9.2 Inspection Requirements
9.3 Commissioning and run-in
9.4 Transport, handling and storage
9.5 Repair
9.6 Installation and exchange
9.7 Condition monitoring
9.8 Lubrication
9.9 Operations and maintenance documentation
Annex A (Informative) Examples of drivetrain interfaces and loads specifications
Annex B (Informative) Gearbox design and manufacturing considerations
Annex C (Informative) Bearing design considerations
Annex D (Informative) Considerations for gearbox structural elements design
Annex E (Informative) Recommendations for lubricant performance in wind turbine gearboxes
Annex F (Informative) Design verification documentation
Annex G (Informative) Bearing calculation documentation
Bibliography
風力發電機組 齒輪箱設計要求
1 范圍
本標準適用于額定功率大于500kW的水平軸式風力發電機組動力傳動鏈的閉式增速齒輪箱。本標準適用于安裝在陸上或海上的風力發電機組齒輪箱。
本標準對風力發電機組中所設計的齒輪和齒輪箱零部件載荷分析提供指導。
本標準適用的齒輪件包括:主傳動鏈中的平行軸和行星傳動的齒輪,諸如直齒輪、斜齒輪或人字齒輪。本標準不適用于齒輪取力裝置(PTO)。
本標準基于使用滾動軸承的齒輪箱設計。使用滑動軸承允許參照本標準,但是本標準不包括對滑動軸承的使用評定。
本標準還對全集成化設計中的軸、軸與輪轂接口、軸承和齒輪箱箱體結構進行工程性指導,以便滿足其惡劣的運行工況。
除了型式試驗和產品試驗以外,本標準還包括傳動裝置的潤滑。最后,本標準還對齒輪箱的運行和維護提供指導。
2 規范性引用文件
下列文件對于本文件的應用是必不可少的。凡是注日期的引用文件,僅注日期的版本適用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改單)適用于本文件。
GB/T 3480.5—2008 直齒輪和斜齒輪承載能力計算 第5部分:材料的強度和質量(ISO 6336-5:2003,IDT)
GB/T 6391—2010 滾動軸承 額定動載荷和額定壽命(ISO 281:2007,IDT)
GB/T 18451.1—2012 風力發電機組 設計要求(IEC 61400-1:2005,IDT)
GB/T 19936.1—2005 齒輪 FZG 試驗程序 第1部分:油品的相對膠合承載能力FZG試驗方法A/8.3/90(ISO 14635-1:2000,IDT)
GB/T 24611—2009 滾動軸承 損傷和失效 術語、特征及原因(ISO 15243:2004,IDT)
IEC 60050(所有部分) 國際電工詞匯(International electrotechnical vocabulary),引自http://electropedia.org
IEC 61400-3 風力發電機組 第3部分:海上風力發電機組設計要求(Wind turbines—Part 3:Design requirements for offshore wind turbines)
IEC/TS 61400-13:2001 風力發電機組 第13部分:機械載荷測量(Wind turbine generator systems—Part 13:Measurement of mechanical loads)
IEC 61400-22:2010 風力發電機組 第22部分:一致性測試和認證(Wind turbines—Part 22:Conformity testing and certification)
ISO 76 滾動軸承額定靜載荷(Rolling bearings—Static load ratings)
ISO 683(所有部分) 熱處理鋼、合金鋼和易切削鋼(Heat-treatable steels,alloy steels and free-cutting steels)
ISO 1328-1 圓柱齒輪 ISO制齒面公差分類 第1部分:齒輪齒面偏差的定義和允許值(Cylindrical gears—ISO system of accuracy—Part 1:Definitions and allowablevalues of deviations relevant to corresponding flanks of gear teeth)
ISO 4287 產品幾何技術規范(GPS) 表面紋理:剖面法 術語、定義和表面紋理參數[Geometrical Product Specifications (GPS)—Surface texture:Profile method—terms,definitions and surface texture parameters]
ISO 4288 產品幾何技術規范(GPS) 表面紋理:剖面法 表面紋理評估的規則和程序[Geometrical Product Specifications (GPS)—Surface texture:Profile method—rulesand procedures for the assessment of surface texture]
ISO 4406 液壓流體動力 流體 固體顆粒污染分級編碼方法(Hydraulic fluid power—Fluids—Method for coding the level of contamination bysolid particles)
ISO 5725-2 測量方法和結果的準確度 第2部分:標準測量方法的可重復性和可還原性基本測量方法[Accuracy (trueness and precision) of measurement methods and results—Part 2:Basic methods for the determination of repeatability and reproducibility of a standardmeasurement method]
ISO 6336(所有部分) 直齒和斜齒圓柱齒輪承載能力的計算(Calculation of load capacity of spur and helical gears)
ISO 6336-1:2006 直齒和斜齒圓柱齒輪承載能力的計算 第1部分:基本原理、緒論和一般影響因素(Calculation of load capacity of spur and helical gears—Part 1: Basicprinciples,introduction and general influence factors)
ISO 6336-2:2006 直齒和斜齒圓柱齒輪承載能力的計算 第2部分:表面耐久性的計算[Calculation of load capacity of spur and helical gears—Part 2:Calculationof surface durability (pitting)]
ISO 6336-3:2006 直齒和斜齒圓柱齒輪承載能力的計算 第3部分:齒根彎曲強度的計算(Calculation of load capacity of spur and helical gears—Part 3:Calculationof tooth bending strength)
ISO 6336-6:2006 直齒和斜齒圓柱齒輪承載能力的計算 第6部分:變載荷工況的壽命計算(Calculation of load capacity of spur and helical gears—Part 6:Calculationof service life under variable load)
ISO 8579-1 齒輪裝置的驗收規范 第1部分:空氣傳播噪聲的試驗規范(Acceptance code for gear units—Part 1:Test code for airborne sound)
ISO 8579-2 齒輪裝置的驗收規范 第2部分:驗收試驗中齒輪裝置機械振動的測定(Acceptance code for gears—Part 2:Determination of mechanical vibrations of gear units during acceptance testing)
ISO/TR 10064-3 圓柱齒輪使用檢驗規程 第3部分:軸心圓柱的齒輪胚料、軸心距和平行度的建議(Cylindrical gears—Code of inspection practice—Part 3:Recommendationsrelative to gear blanks,shaft centre distance and parallelism of axes)
ISO 10474 鋼和鋼成品 檢驗文件(Steel and steel products—Inspection documents)
ISO 12925-1 潤滑劑、工業用油及有關(L類)產品,(齒輪)C種 第1部分:閉式齒輪系統用潤滑劑規范[Lubricants,industrial oils and related products (class L). Family C (Gears)—Part 1:Specifications for lubricants for enclosed gear systems]
ISO/TR 13593 工業用閉式齒輪傳動裝置(Enclosed gear drives for industrial applications)
ISO/TR 13989-1 圓柱、斜面和準雙曲面齒輪咬接載荷能力的計算 第1部分:瞬間溫度法(Calculation of scuffing load capacity of cylindrical,bevel and hypoid gears—Part 1:Flash temperature method)
ISO/TR 13989-2 圓柱、斜面和準雙曲面齒輪咬接負載能力的計算 第2部分:累積溫度法(Calculation of scuffing load capacity of cylindrical,bevel and hypoid gears—Part 2:Integral temperature method)
ISO 14104 齒輪 磨光后的表面回火侵蝕檢查(Gears—Surface temper etch inspection after grinding)
ISO/TS 16281:2008 滾動軸承 萬向承重軸承用修正額定壽命參考值的計算方法(Rolling bearings—Methods for calculating the modified reference ratinglife for universally loaded bearings)
AGMA 9005 工業齒輪潤滑(Industrial gear lubrication)
ANSI/AGMA 925-A02 齒面潤滑失效的影響(Effect of lubrication on gear surface distress)
ANSI/AGMA 6001-E10 封閉齒輪傳動裝置的設計和選擇(Design and selection of components for enclosed gear drives)
ANSI/AGMA 6123 封閉式行星齒輪傳動設計手冊(Design manual for enclosed epicyclic gear drives)
ASTM E1049-85 疲勞分析中周期計算規程(Standard practices for cycle counting in fatigue analysis)
DIN 471 軸用彈性擋圈:標準型和重型[Circlips (retaining rings) for shafts: Normal type and heavy type]
DIN 472 孔用彈性擋圈:標準型和重型[Circlips (retaining rings) for bores:Normal type and heavy type]
DIN 743-2000 軸類零件承載能力的計算,第1、2、3部分(Shafts and axles,calculations of load capacity,Parts 1,2,3)
DIN 3990-4 圓柱齒輪承載能力的計算:嚙齒承載能力的計算(Calculation of load capacity of cylindrical gears:calculation of scuffing loadcapacity)
DIN 6885-2 機床用平鍵 傳動連接 鍵和鍵槽型式及尺寸(Parallel Key Geometries)
DIN 6892 無錐度連接驅動式緊固件 鍵的計算和設計(僅在德國使用) (Mitnehmerverbindungen ohne Anzug—Passfedern—Berechnung und Gestaltung) (available in German only)
DIN 7190 過盈配合 計算和設計原則(Interference fits—Calculation and design rules)
DIN 51517-3 潤滑劑 第3部分:潤滑劑的CLP,最小需求(Lubricants:Lubricating oils—Part 3:Lubricating oils CLP;Minimum requirements)
EN 10204:2004 金屬產品 檢驗文件類型(Metallic products—Types of inspection documents)
EN 12680-3:2003 鑄件超聲檢測(Ultrasonic examination—Spheroidal graphite cast iron castings)
3 術語和定義、約定
3.1 術語和定義
GB/T 18451.1—2012和IEC 60050-415界定的以及下列術語和定義適用于本文件。
注:本標準的定義優先采用。
3.1.1
軸承制造商 bearing manufacturer
為風力發電機組齒輪箱提供軸承的法人實體,并負責軸承的設計及應用工程。
注:通常軸承供應商也制造軸承。
3.1.2
認證機構 certification body
按照IEC 61400-22的要求對風力發電機組齒輪箱進行合格認證的實體。
3.1.3
特征載荷 characteristic load
負載值不超過規定概率的載荷。
注:參見3.1.5設計載荷。
3.1.4
設計壽命 design lifetime
規定的滿足強度驗證的持續時間。
注:某些易維護的組件和易損件壽命可能低于規定的整臺齒輪箱設計壽命。
3.1.5
設計載荷 design load
任何零部件強度驗證所采用的載荷。
注1:設計載荷由特征載荷乘以適當的載荷局部安全系數得到。
注2:參見GB/T 18451.1—2012及第6章。
3.1.6
雙列軸承 double-row bearings
有雙列滾動體的滾動軸承。
3.1.7
等效載荷 equivalent load
使用規定的壽命指數和循環次數下,與實際的變化載荷造成相同損傷的載荷。
注:在整個載荷范圍內,等效載荷并不等于所有載荷段的平均載荷值。
3.1.8
極限載荷 extreme load
運行或非運行工況中所有載荷分量中,具有最大絕對值的設計載荷。
注:該載荷分量可以是一個力、力矩、轉矩或它們的組合。
3.1.9
齒輪箱制造商 gearbox manufacturer
負責齒輪箱設計,并規定齒輪箱及其零部件制造要求的實體。
注:在實際情況中,一些法人實體可能參與了這一過程,但在本標準沒有反映這種情況。
3.1.10
接口 interface
齒輪箱與風力發電機組連接所采用的型式和尺寸,以及控制信號、液壓油和潤滑油交換所采用的型式和尺寸。
3.1.11
載荷裕度系數 load reserve factor
LRF
零部件的最大許用載荷與設計載荷的比值。
注:LRF可以分別由極限強度和疲勞強度計算確定。
3.1.12
局部失效 local failure
在一個危險截面,應變超過最大許用值而產生的失效。
3.1.13
定位軸承 locating bearing fixed bearing
承受雙向軸向載荷的軸承。
3.1.14
潤滑劑供應商 lubricant supplier
通過風力發電機組制造商、齒輪箱制造商或者風力發電機組業主為風力發電機組齒輪箱提供潤滑油的法人實體。
注:潤滑油供應商可不生產任何潤滑劑成分或按比例混合最終產品,但需對潤滑劑的性能和混合技術規范負責。
3.1.15
最大運行載荷 maximum operating load
按照GB/T 18451.1—2012所定義的設計工況及載荷局部安全系數,確定的疲勞分析的最大載荷。
3.1.16
機艙 nacelle
機組塔架之上的結構,容納動力傳動鏈、發電機、其他部件、控制件以及執行系統。
3.1.17
浮動端軸承 non-locating bearing
浮動軸承 floating bearing
僅承受徑向載荷的軸承。
3.1.18
配對軸承 paired bearings
安裝在同一位置的相同類型的兩個軸承。
注:軸承的配對布置使得它們的徑向承載能力得到加強并且具有雙向軸向承載能力(例如兩個TRB軸承或兩個ACBB軸承面對面或背靠背布置),或者可將它們串聯布置以增強徑向承載能力和單向軸向承載能力(參見C.7)。
3.1.19
雨流矩陣 rainflow matrices
使用一個包含計數循環的二維矩陣,此循環發生在循環方式和幅值的子范圍內,表示的疲勞載荷。
注:參見A.4.3。
3.1.20
時間序列 time series
描述風力發電機組不同運行載荷區間的時間集合。
注:這些時間序列和其相應的出現次數組合在一起表征整個設計壽命周期內的載荷歷程。
3.1.21
風力發電機組制造商 wind turbine manufacturer
按照本標準提出齒輪箱設計要求的責任實體。
注:通常,風力發電機組制造商負責設計、制造和銷售風力發電機組。
3.1.22
風力發電機組業主 wind turbine owner
購買和負責風力發電機組運行的實體。
注:實際上,業主可以與不同的法人實體就風力發電機組的運行和維護簽約。在本標準中并沒有反映這種區別。
3.2 約定
3.2.1 軸承位置的命名
下列縮寫可以用來定義軸承位置(軸的命名定義在3.2.2中):
● RS:風輪側(通常為上風向);
● GS:發電機側(通常為下風向)。
如果是配對軸承可以使用下列縮寫:
● IB:內側(相對指向軸內側);
● OB:外側(相對指向軸外側)。
3.2.2 軸的命名——典型的風力發電機組齒輪箱結構實例
圖1給出了3級平行傳動齒輪箱中軸的名稱定義。在4級平行傳動齒輪箱中,中間的軸稱為“低速中間軸”“中速中間軸”和“高速中間軸”。
說明:1——HSS高速軸; 4——LSS低速軸;
2——HS-IS高速中間軸; PIN——功率輸入;
3——LS-IS低速中間軸; POUT——功率輸出。
圖1 3級平行傳動齒輪箱中軸的名稱定義
圖2給出了1級行星加2級平行傳動齒輪箱中軸的名稱定義。
說明:
1——HSS高速軸; 5——LSS低速軸;
2——HS-IS高速中間軸; PIN——功率輸入;
3——LS-IS低速中間軸; POUT——功率輸出。
4——PS行星軸;
圖2 1級行星加2級平行傳動齒輪箱中軸的名稱定義
圖3給出了2級行星加1級平行傳動齒輪箱中軸的名稱定義。
說明:
1——HSS高速軸;
2——HS-IS高速中間軸;
3——IS-PS中速行星軸;
4——ISS中速軸;
5——LS-PS低速行星軸;
6——LSS低速軸;
PIN——功率輸入;
POUT——功率輸出。
圖3 2級行星加1級平行傳動齒輪箱中軸的名稱定義
4 符號和縮略語
4.1 符號
本標準從數個工程學科中引用方程和關系式。所以在某些情況下,同一個符號存在定義不一致的地方。盡管如此,文中所有的符號都在表1中列出。如有歧義,符號所指定的定義將在公式、圖表或文本中以備注形式呈現。
表1 文本中使用的符號
符號 描述 單位
a 加速度 mm/s2
a 赫茲接觸橢圓的長半軸 mm
a1 可靠性壽命修正系數 —
A3 極限應變 %
A5 極限應變 %
b 赫茲接觸橢圓的短半軸 mm
c 剛度 N/mm
Nm/rad
c 單位應力 MPa/N
MPa/Nm
C 軸承的基本額定動載荷 N
CLIi ith沖載荷段的壽命消耗指數 %
c(s) 位置s處的單軸彈性單位應力 MPa/N
MPa/Nm
CδL 軸承的彈性常數 —
C0 軸承的基本額定靜載荷 —
cij(s) 單軸單位載荷在位置s處的彈性應力張量 MPa/N
MPa/Nm
cij,k(s) 單位載荷K在位置s處的彈性應力張量 MPa/N
MPa/Nm
cij,m(s) 位置s處的彈性應力張量的平均值 MPa/N
MPa/Nm
CT 接觸截短系數 —
d 阻尼增量
D 累積損傷 —
Di 第i載荷段造成的損傷 —
Dw 軸承滾動體的直徑 mm
Dpw 軸承中滾動體組合的節圓直徑 mm
e 軸承常數,軸向載荷與徑向載荷之比(Fa/Fr)的限值 —
eC 潤滑劑清潔度系數 —
eσij(s,t) 時間t時,位置s處的彈性應力張量 MPa
eσij,a(s) 局部應力張量幅值 MPa
eσa,eq(s) 位置s處的等效應力幅值 MPa
eσij,m(s) 平均局部應力張量 MPa
E 彈性模量(楊氏模量) MPa
F 力 N
f∑δ 箱體或轉架在同一平面內的偏差 mm
f∑γ 投影到齒寬上的理想軸相對于軸的對中誤差而產生的嚙合錯位 mm
f∑β 箱體或支架的外平面偏差 mm
Fa 軸承的軸向載荷 N
fHβ 齒輪螺旋線偏差 mm
fma 齒輪幅嚙合錯位量 mm
Fr 軸承徑向載荷 N
Gr 軸承徑向工作游隙 mm
J 坐標系中x,y,z方向轉動慣量 kgm2
k S/N曲線傾斜指數 —
k 最大承載滾動體載荷分配系數 —
Kγ 嚙合載荷系數 —
KFα 齒間載荷分配系數(彎曲應力) —
KFβ 齒向載荷分布系數(彎曲應力) —
KHα 齒間載荷分配系數(接觸應力) —
KHβ 齒向載荷分布系數(接觸應力) —
KIc 最大接觸應力與無錯位線接觸應力比 —
Km 錯位最大接觸應力與無錯位最大接觸應力比 —
Kv 動載系數 —
l 長度 mm
L 載荷值 N或Nm
L10mr,i 10%失效概率,第i載荷段的修正參考額定壽命 106r
La 載荷幅值 N或Nm
La,eq 等效載荷幅值 N或Nm
Le 彈性載荷極限 N或Nm
Lh10 10%失效概率的基本額定壽命 h
Lk(t) 時間序列中與時間相關的某個載荷分量 N或Nm
Lm 載荷段中的平均載荷 N或Nm
Lnmr n%失效概率的修正參考額定壽命 106r
Lnr n%失效概率的參考額定壽命 106r
Lp 總屈服極限或發生塑性變形的載荷極限 N或Nm
LRFf 抗疲勞載荷裕度系數 —
LRFu 抗極限載荷裕度系數 —
Lw 滾動體的有效長度 mm
m 質量 kg
m 載荷譜中的載荷段數 —
M 力矩 Nm
mn 齒輪法向模數 mm
n 失效概率 %
n 轉速 min-1
neq,j 載荷譜中第j載荷段的等效轉速 min-1
ni or nj 第i或第j載荷段的循環次數 —
N 特征應力壽命曲線的循環次數 —
ND 等幅測試試樣的應力-壽命曲線拐點處的循環次數
Ni 根據S/N曲線的第i載荷段的耐久循環次數 —
Ni 在整個設計壽命期間i循環發生的次數 —
NL 循環次數 —
npl,σ,GF 與Rp相關的整體失效局部應力截面系數 —
npl,σ,LF 與Rp相關的局部失效局部應力截面系數 —
nref 參考循環次數 —
p 軸承壽命計算等式中的指數 —
P 軸承動態等效載荷 N
Pi,j 載荷譜中第i或第j載荷段的載荷值 N
P0 軸承點接觸時的接觸應力 MPa
P0 軸承當量靜載荷 N
Pel 發電機的電功率 kW
Pline 軸承線接觸近似承載接觸應力 MPa
Pmax 軸承線接觸近似最大接觸應力 MPa
Q 零游隙軸承單個滾子最大載荷 N
qi 在第i個載荷等級內時間、循環或旋轉數的分配 —
Qoil 潤滑油量 L
R 應力比 —
r12 旋轉軸平面內滾動體半徑 mm
r22 滾道橫截面的溝槽半徑 mm
Ra 算術平均粗糙度 μm
Rm 極限抗拉或抗壓強度 MPa
Rp 屈服強度(0.2%的塑性應變的屈服點或位移屈服點) MPa
Rz 平均峰谷粗糙度(按照ISO 4287/ISO 4288) μm
s 位移 mm
s 位置變量 —
S 接觸密合度 —
S0 (軸承)靜態安全系數 —
SB 膠合安全系數 —
SF 彎曲強度安全系數 —
SH 接觸強度安全系數 —
t 時間變量 s
VI 黏度指數 —
vt 節圓線速度 m/s
X0 軸承常數,徑向靜載荷系數 —
Y0 軸承常數,軸向靜載荷系數 —
YNT 彎曲強度計算的壽命系數 —
YSg 載荷作用于齒頂時的應力修正系數 —
Z 軸承單個滾道中滾動體總數 —
ZNT 接觸強度計算的壽命系數 —
α 旋轉角度 °
α0 軸承公稱接觸角 °
γf 載荷局部安全系數 —
γm 材料局部安全系數 —
γn 失效后果的局部安全系數 —
δ 偏轉 mm
εlim 切口彈塑性極限應變 %
ΘL 軸不對中傾角 °arc-min
κ 黏度比 —
μ 附加的赫茲參數 —
v 附加的赫茲參數 —
v 實際的運動黏度 mm2/s
v1 參考運動黏度 mm2/s
v40 40℃的運動黏度 mm2/s
ρ11 主平面1內滾動體1的曲率因子 —
ρ12 主平面2內滾動體1的曲率因子 —
ρ21 主平面1內滾動體2的曲率因子 —
ρ22 主平面2內滾動體2的曲率因子 —
σ 應力(真實應力) MPa
σa 產生循環應力振幅 MPa
σA 構件在ND循環時的設計疲勞強度 MPa
σa,R 應力循環具有最小/最大比值R對應的σa值 MPa
σA,R 與具有最小/最大比值R的載荷循環相關的σA值 MPa
σD 試樣在ND循環時的特征疲勞強度 MPa
σD,R 具有最小/最大比值R的試驗得到的σD值 MPa
σel 線性彈性應力 MPa
σFE 許用應力數(彎曲) MPa
σHlim 許用應力數(接觸應力) MPa
σI 最大主應力 MPa
σⅢ 最小主應力 MPa
σij,pre(s) 位置s處的局部預應力張量 MPa
σlim 極限應力水平 MPa
σmax 最大彈性應力 MPa
σprin 絕對最大主應力 MPa
∑ρline 線接觸曲率和 —
∑ρpoine 點接觸曲率和 —
τ 附加赫茲參數 —
4.2 縮略語
縮略語如表2所示。
表2 縮略語
縮略語 描述
ACBB 角接觸球軸承
AGMA 美國齒輪制造商協會
ANSI 美國國家標準學會
ASTM 美國材料實驗協會
CEC 歐盟委員會
CRB 圓柱滾子軸承
CRTB 推力圓柱滾子軸承
DGBB 深溝球軸承
DIN 德國標準化學會
DLC GB/T 18451.1—2012中使用的設計載荷工況
DR ACBB 雙列角接觸球軸承
DR CRB 雙列圓柱滾子軸承
DR FCCRB 雙列滿滾子圓柱滾子軸承
DR TRB 雙列圓錐滾子軸承
EXT 極限載荷(矩陣)
EHL 彈性流體動力潤滑
FCCRB 滿滾子圓柱滾子軸承
FEA 有限元分析
FMEA 失效模式和影響分析
FPCBB 四點接觸球軸承
FZG 慕尼黑工業大學“齒輪和齒輪裝置測試”
GS 發電機側(通常下風向)
HS-IS 高速-中間軸
HSS 高速軸
IEC 國際電工委員會
ISO 國際標準化組織
LDD 載荷-持續時間分布(直方圖)
LRD 載荷-循環次數分布(直方圖)
LS-IS 低速-中間軸
LS-PS 低速-行星軸
LSS 低速軸
NPT 美國標準圓錐管螺紋
PAG 聚烷基乙二醇或聚乙二醇合成潤滑劑
PAO 基于合成烴的聚α-烯烴全石蠟族合成潤滑劑
PS 行星輪軸(或輪軸)
PTO 取力裝置,驅動輔助設備如油泵的附加輸出軸
RFC 雨流計數
RMS 均方根
RS 風輪側(通常上風向)
SRB 調心球面滾子軸承
SRTB 調心球面滾子推力軸承
TCT 總接觸溫度法(勃洛克方法)
TIFF 齒輪內部疲勞斷裂
TORB 圓環軸承
TRB 圓錐滾子軸承
VG 黏度等級
WTG 風力發電機組(系統)
5 可靠性設計
5.1 設計壽命及可靠性
風力發電機組齒輪箱的設計目標在于實現高利用率的同時,其可靠性亦可控制壽期內的維護及修理費用。其設計壽命應不小于風力發電機組的設計壽命。根據GB/T 18451.1—2012,對于Ⅰ到Ⅲ級風力發電機組,其壽命應不小于20年。
GB/T 18451.1—2012將部件級別定義為其失效潛在結果的函數。齒輪箱被定義為2級部件,或“無失效”結構部件,即其自身失效會導致風力發電機組主要部分失效。一臺風力發電機組齒輪箱是由扭矩傳遞零件如齒輪、齒輪軸、軸及聯軸器,機械零件如軸承,結構支撐零件如扭力臂或箱體,及螺紋連接件裝配而成的。這些零件是依據其具體設計標準進行設計的,如滾動軸承依據ISO 76及GB/T 6391—2010,齒輪件依據ISO 6336。這些標準大多都涵蓋了不同的應用種類,并未注明其在某一具體應用中應滿足的安全系數或設計壽命。這些相關的零件標準又大多使用不同的可靠性計量方法,因此使得這些零件在同一系統內(如風力發電機組齒輪箱)達到同一可靠性等級變得困難。