Codeofchina.com is in charge of this English translation. In case of any doubt about the English translation, the Chinese original shall be considered authoritative.
This part is one of the series standards for 5G digital cellular mobile telecommunication network — eMBB user equipment (Phase 1), which are composed of the following ones:
a) YD/T 3627-2019 5G digital cellular mobile telecommunication network — Technical requirements of eMBB user equipment (Phase 1)
b) 5G digital cellular mobile telecommunication network — Testing Methods of eMBB user equipment (Phase 1)
As the technology develops, subsequent standards will be developed.
This standard is developed in accordance with the rules given in GB/T 1.1-2009.
Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. The issuing body of this standard shall not be held responsible for identifying any or all such patent rights.
This standard was proposed by and is under the jurisdiction of China Communications Standards Association.
Drafting units of this standard: China Academy of Information and Communications Technology (CAICT), China Mobile Communications Group Co., Ltd., China Telecom Group Co., Ltd., China United Network Communications Group Co., Ltd., Huawei Technologies Co., Ltd., Beijing Xiaomi Mobile Software Co., Ltd., Guangdong OPPO Mobile Communications Co., Ltd., Vivo Mobile Communications Co., Ltd., MediaTek Bodong Technology ( Beijing) Co., Ltd., Beijing Zhanxun Hi-Tech Communication Technology Co., Ltd., Zhongxing Telecom Equipment (ZTE) Corporation, Qualcomm Wireless Communication Technology (China) Co., Ltd., National Radio Monitoring Center Testing Center, Datang Telecom Technology Industry Group (Telecommunications Science and Technology Research Institute), Intel (China) Co., Ltd., Shanghai Nokia Bell Co., Ltd., Dingqiao Communication Technology Co., Ltd. and Beijing Samsung Communication Technology Research Co., Ltd..
Main drafters of this standard: Li Xing, Lu Songhe, Jin Chenguang, He Weijun, Zhang Nuoya, Zhou Jing, Shi Yu, Shen Li, Liu Yang, Yang Ning, Zhang Yuan (Vivo Mobile Communications Co., Ltd.), Wang Yunqi, Shi Yanshan, Ma Wei, Chen Shuping, Yuan Bo, Xing Yanping, Zhang Yuan (Intel (China) Co., Ltd.) and He Jing.
5G Digital Cellular Mobile Telecommunication Network — Technical Requirements of eMBB User Equipment (Phase 1)
1 Scope
This standard specifies the transmission capability, service capability, basic protocol function, radio frequency, power consumption, interface, security and other requirements of 5G enhanced mobile broadband (eMBB) user equipment in the frequency band below 6GHz.
This standard is applicable to 5G UEs facing Non-Stand Alone (NSA) and Stand Alone (SA) that support eMBB scenarios in the frequency band below 6GHz.
2 Normative References
The following documents are normatively referenced in this document and are indispensable for its application. For dated reference, only the edition cited applies. For undated references, the latest edition of the referenced documents (including any amendments) applies.
YD/T 2575-2016 Technical Requirements for User Equipment of TD-LTE Digital Cellular Mobile Telecommunications Network (Phase 1)
YD/T 2577-2013 Technical Requirements for User Equipment of LTE FDD Digital Cellular Mobile Telecommunications Network (Phase 1)
3GPP TS 23.501 System Architecture for the 5G System (Release 15)
3GPP TS 24.301 Non-Access-Stratum (NAS) Protocol for Evolved Packet System (EPS); Stage 3 (Release 15)
3GPP TS 24.501 Non-Access-Stratum (NAS) Protocol for 5G System (5GS); Stage 3 (Release 15)
3GPP TS 36.201 Evolved Universal Terrestrial Radio Access (E-UTRA): LTE physical Layer; General description (Release 15)
3GPP TS 36.211 Evolved Universal Terrestrial Radio Access (E-UTRA): Physical Channels and Modulation (Release 15)
3GPP TS 36.212 Evolved Universal Terrestrial Radio Access (E-UTRA): Multiplexing and Channel Coding (Release 15)
3GPP TS 36.213 Evolved Universal Terrestrial Radio Access (E-UTRA): Physical Layer Procedures (Release 15)
3GPP TS 36.214 Evolved Universal Terrestrial Radio Access (E-UTRA): Physical Layer; Measurements (Release 15)
3GPP TS 36.300 Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved Universal Terrestrial Radio Access Network (E-UTRAN): Overall Description; Stage 2 (Release 15)
3GPP TS 36.302 Evolved Universal Terrestrial Radio Access (E-UTRA): Services Provided by the Physical Layer (Release 15)
3GPPTS 36.304 Evolved Universal Terrestrial Radio Access (E-UTRA); User Equipment (UE) Procedures in Idle Mode (Release 15)
3GPP TS 36.314 Evolved Universal Terrestrial Radio Access (E-UTRA): Layer 2-Measurements (Release 15)
3GPP TS 36.321 Evolved Universal Terrestrial Radio Access (E-UTRA): Medium Access Control (MAC) Protocol Specification (Release 15)
3GPP TS 36.322 Evolved Universal Terrestrial Radio Access (E-UTRA): Radio Link Control (RLC) Protocol Specification (Release 15)
3GPP TS 36.323 Evolved Universal Terrestrial Radio Access (E-UTRA); Packet Data Convergence Protocol (PDCP) Specification (Release 15)
3GPP TS 36.331 Evolved Universal Terrestrial Radio Access (E-UTRA); Radio Resource Control (RRC): Protocol Specification (Release 15)
3GPP TS 37.324 Evolved Universal Terrestrial Radio Access (E-UTRA) and NR; Service Data Adaptation Protocol (SDAP) Specification (Release 15)
3GPP TS 37.340 Evolved Universal Terrestrial Radio Access (E-UTRA) and NR; Multi-connectivity; Stage-2 (Release 15)
3GPP TS 38.101-1 NR; User Equipment (UE) Radio Transmission and Reception; Part 1: Range 1 Standalone (Release 15)
3GPP TS 38.101-3 NR; User Equipment (UE) Radio transmission and Reception; Part 3: Range 1 and Range 2 Interworking Operation with Other Radios (Release 15)
3GPPTS 38.201 NR; Physical Layer; General Description (Release 15)
3GPP TS 38.202 NR; Services Provided by the Physical Layer (Release 15)
3GPPTS 38.211 NR; Physical Channels and Modulation (Release 15)
3GPPTS 38.212 NR; Multiplexing and Channel Coding (Release 15)
3GPP TS 38.213 NR; Physical Layer Procedures for Control (Release 15)
3GPP TS 38.214 NR; Physical Layer procedures for data (Release 15)
3GPP TS 38.215 NR; Physical Layer measurements (Release 15)
3GPP TS 38.300 NR; Overall Description; Stage-2 (Release 15)
3GPP TS 38.304 NR; User Equipment (UE) Procedures in idle mode (Release 15)
3GPP TS 38.306 NR; User Equipment (UE) Radio Access Capabilities (Release 15)
3GPP TS 38.307 NR; Requirements on User Equipments (UEs) Supporting a Release-independent Frequency Band (Release 15)
3GPP TS 38.321 NR; Medium Access Control (MAC) protocol Specification (Release 15)
3GPP TS 38.322 NR; Radio Link Control (RLC)Protocol Specification (Release 15)
3GPP TS 38.323 NR; Packet Data Convergence Protocol (PDCP) Specification (Release 15)
3GPP TS 37.324 NR; Service Data Protocol (SDAP) Specification (Release 15)
3GPP TS 38.33l NR; Radio Resource Control (RRC): Protocol Specification (Release 15)
3GPP TS 38.401 NG-RAN; Architecture Description (Release 15)
3 Abbreviations
For the purpose of this document, the following symbols and abbreviated terms apply.
ACK: Acknowledgment
AM: Acknowledgment Mode
AMC: Adaptive Modulation and Coding
ARQ: Automatic Repeat-request
BBU: Base Band Unit
BCCH: Broadcast Control Channel
BCH: Broadcast Channel
BER: Bit Error Ratio
BLER: Block Error Ratio
BIT/SK: Binary Phase Shift Keying
CCCH: Common Control Channel
CCE: Control Channel Element
CMAS: Commercial Mobile Alert Service
CP: Cyclic Prefix
CPE: Customer Premise Equipment
CQI: Channel Quality Indicator
CRC: Cyclic Redundancy Check
CSI: Channel State Information
DCCH: Dedicated Control Channel
DCI: Downlink Control Information
DFT-S-OFDMDFT-Spread OFDMDFT
DL: Downlink
DL-SCH: Downlink Shared Channel
DRX: Discontinuous Reception
DTX: Discontinuous Transmission
eNodeB (eNB): Evolved NodeBLTE
EPC: Evolved Packet Core network
EWTS: Earthquake and Tsunami Warning System
GBR: Guaranteed Bit Rate
GP: Guard Period
GPS: Global Positioning System
HARQ: Hybrid Automatic Repeat-request
IR: Incremental Redundancy
LTE: Long Term Evolution
MAC: Media Access Control
MCS: Modulation and Coding Scheme
MIB: Master Information Block
MiFi: Mobile Wi-Fi Hotspot
MIMO: Multiple Input Multiple Output
NACK: Negative Acknowledgment
NSA: Non-Standalone
OFDMA: Orthogonal Frequency Division Multiple Access
PBCH: Physical Broadcast Channel
PCCH: Paging Control Channel
PCH: Paging Channel
PDCCH: Physical Downlink Control Channel
PDCP: Packet Data Convergence Protocol
PDSCH: Physical Downlink Shared Channel
PDU: Packet Data Unit
PHY: Physical Layer
PLMN: Public Lands Mobile Network
PMI: Precoding matrix indicator
PRACH: Physical Random Access Channel
PRB: Physical Resource Block
PUCCH: Physical Uplink Control Channel
PUSCH: Physical Uplink Shared Channel
PSS: Primary Synchronization Signal
QAM: Quadrature Amplitude Modulation
QPSK: Quaternary Phase Shift Keying
RACH: Random Access Channel
RAT: Radio Access Technology
RB: Radio Bearer
REG: RE Group
RI: Rank Indicator
RLC: Radio Link Control
RNTI: Random Access Radio Network Temporary Identifier
ROHC: Robust Header Compression
RRC: Radio Resource Control
RRU: Radio Remote Unit
RS: Reference Signal
RSRP: RS Receiving Power
RSRQRS: Received Quality RS
RV: Redundancy Version
SA: Standalone
SC-FDMA: Single Carrier FDMA
SCH: Synchronization Channel
SDU: Service Data Unit
SIB: System Information Block
SRS: Sounding Reference Signal
SSS: Secondary Synchronization Signal
SUL: Supplementary Uplink
TA: Timing Advance
TDD: Time Division Duplex
TM: Transparent Mode
TPC: Transmit Power Control
TTI: Transmission Time Interval
UCI: Uplink Control Information
UE: User Equipment
UL: Uplink
UL-SCH: Uplink Shared Channel
UM: Un-acknowledgment Mode
UTC: Coordinated Universal Time
URSP: UE Route Selection Policy
VoIMS: Voice Over IMS
VoLTE: Voice Over LTE
4 General
4.1 Classification of User Equipment (UE)
According to the size and application range, user equipment (UE) may be roughly classified as follows:
——Voice data type: such UE (e.g., hand-held user equipment) can support circuit domain (or packet domain) voice services as well as packet domain bearer services;
——Data type: such UE (e.g., Wi-Fi, data card and central processing element (CPE)) dose not support CS domain voice services but packet domain bearer services.
4.2 Power Class of UE
The power class of UE is defined according to the maximum output power of all cellular antennas, as shown in Table 1.?
Table 1 Power Class of UE
Power class Max. output power Requirement
2 +26 dBm Mandatory for SA operating mode
3 +23dBm Mandatory for NSA operating mode
4.3 Stand Alone (SA) Operating Mode
SA Mode shall support Option 2. In this mode, the UE accesses the 5G base station (gNB) connected to the 5G core network through the NR air interface. The networking architecture diagram of Option 2 is shown in Figure 1.
Figure 1 Schematic Diagram of Option 2 Networking Architecture
4.4 Non-Stand Alone (NSA) Operating Mode
NSA mode shall support Option 3a and Option 3x, as shown in Figure 2. In this mode, the UE accesses the 4G base station (eNB) and the 5G base station (gNB) connected to the 4G core network through LTE air interface and NR air interface, in which the 4G base station is the main station (MN) and the 5G base station is the auxiliary station.?
Figure 2 Schematic Diagram of Option 3a/3x Networking Architecture
5 Capacity Requirements for UE
5.1 Transmission Capability of UE
5.1.1 SA Operating mode
According to the uplink capability configuration, UE in SA operating mode may be divided into two types:
——Type 1 UE: support uplink single transmission, SRS in-turn transmission 1T2R, HPUE (single antenna 26dBm) and uplink 256QAM modulation;
——Type 2 UE: support uplink dual transmission, SRS in-turn transmission 2T4R, HPUE (dual antenna 23 + 23dBm) and uplink 256QAM modulation.
The transmission capability of Type 1 UE in SA operating mode shall meet the requirements of Table 2.
Table 2 Transmission Capability Requirements of Type 1 UE in SA Operating Mode
NR key parameters Requirements
Downlink Downlink waveform CP-OFDM
Max. carrier bandwidth 100 MHz
Downlink subcarrier spacing 15kHz (at access), 30kHz (at service)
Downlink MIMO transmission Transmission of layers 1, 2 and 4
demodulation reference signal (DMRS) signal Type 1
Additional DMRS for high-speed moving scenes 1/2 additional DMRS, mandatory
3 additional DMRS, optional
Downlink CQFRI/PMI/CRI measurement of CSI-RS Port 4, Port 8 and Port 16
Downlink modulation scheme QPSK, 16QAM, 64QAM and 256QAM
PDSCH mapping type Type A, Type B
Allocation method for PDSCH frequency domain resource Type 0 (discontinuous allocation), Type 1 (continuous allocation)
Uplink Uplink waveform CP-OFDM, DFT-S-OFDM
Uplink subcarrier spacing 30kHz
Uplink SIMO transmission Layer 1 transmission
Demodulation reference signal (DMRS) signal Type 1, Type 2
Downlink transmission mode Codebook-based transmission mode
Uplink modulation scheme QPSK, 16QAM, 64QAM and 256QAM
Allocation method for PUSCH frequency domain resource Type 1 (continuous allocation)
PUSCH mapping type Type A, Type B
SRS transmission Port 1
SRS antenna handover 1T2R in-turn transmission, mandatory
1T4R in-turn transmission, optional
Downlink peak rate The calculation is conducted according to the maximum downlink 4-layer MIMO, the maximum downlink 256QAM modulation, the maximum carrier bandwidth of 100 MHz and the carrier spacing of 30kHz:
· For 5 ms single-period frame structure, the theoretical downlink peak value of single carrier is 1.745 Gbit/s.
· For 2.5 ms dual-period frame structure, the theoretical downlink peak value of single carrier is 1.485 Gbit/s
· For 3 ms + 2 ms dual-period frame structure, the theoretical downlink peak value of single carrier is 1.745 Gbit/s
· For 1 ms single-period frame structure, the theoretical downlink peak value of single carrier is 1.17 Gbit/s
· For 2.5 ms single-period (3U1D) frame structure, the theoretical downlink peak value of single carrier is 0.78 Gbit/s
· For 2.5 ms single-period (1U3D) frame structure, the theoretical downlink peak value of single carrier is 1.72 Gbit/s
See 6.1.1.3 for the definition of frame structure
Uplink peak rate The calculation is conducted according to the maximum uplink 1-layer SIMO transmission, the maximum carrier bandwidth of 100 MHz and the carrier spacing of 30 kHz of the UE:
· For 5 ms single-period frame structure, the theoretical uplink peak of single carrier is 95Mbit/s (64QAM) or 127 Mbit/s (256QAM).
· For 2.5 ms dual-period frame structure, the theoretical uplink peak of single carrier is 143Mbit/s (64QAM) or 190 Mbit/s (256QAM)
· For 3 ms + 2 ms dual-period frame structure, the theoretical uplink peak value of single carrier is 95 Mbit/s (64QAM) or 127 Mbit/s (256QAM).
· For 1 ms single-period frame structure, the theoretical uplink peak value of single carrier is 203Mbit/s (64QAM) or 270Mbit/s (256QAM)
· For 2.5 ms single-period (3U1D) frame structure, the theoretical uplink peak of single carrier is 285 Mbit/s (64QAM) or 380 Mbit/s (256QAM).
· For 2.5 ms single-period (1U3D) frame structure, the theoretical uplink peak of single carrier is 95 Mbit/s (64QAM) or 127 Mbit/s (256QAM)
The frame structure is defined in 6.1.1.3
The transmission capability of the type 2 UE in SA operating mode shall meets the requirements listed in Table 3.
Table 3 Transmission Capability Requirements of Type 2 UE In SA Operating Mode
NR Key Parameters Requirements
Downlink Downlink waveform CP-OFDM
Maximum carrier bandwidth 100 MHz
Downlink subcarrier spacing 15kHz (at access), 30kHz (at service)
Downlink MIMO transmission Transmission of layers 1, 2 and 4
Demodulation reference signal (DMRS) signal Type 1
Additional DMRS for high-speed moving scenes 1/2 additional DMRS, mandatory
3 additional DMRS, optional
CQI/RI/PMI/CRI measurement of CSI-RS Port 4, Port 8 and Port 16
Downlink modulation scheme QPSK, 16QAM, 64QAM and 256QAM
PDSCH mapping Type Type A, Type B
Allocation method for PDSCH frequency domain resource Type 0 (discontinuous allocation), Type 1 (continuous allocation)
Uplink Uplink waveform CP-OFDM,DFT-S-OFDM
Downlink subcarrier spacing 30kHz
Uplink MIMO transmission Transmission of layers 1 and 2
Demodulation reference signal (DMRS) signal Type 1, Type 2
Downlink transmission mode Codebook-based transmission mode
Uplink modulation scheme QPSK, 16QAM, 64QAM and 256QAM
Allocation method for PUSCH frequency domain resource Type 1 (continuous allocation)
PUSCH mapping type Type A, Type B
SRS transmission Port 1 and Port 2
SRS antenna handover 2T4R in-turn transmission
Downlink peak rate The calculation is conducted according to the maximum downlink 4-layer MIMO, the maximum downlink 256QAM modulation, the maximum carrier bandwidth of 100 MHz and the carrier spacing of 30kHz:
· For 5 ms single-period frame structure, the theoretical downlink peak value of single carrier is 1.745 Gbit/s
· For 2.5 ms dual-period frame structure, the theoretical downlink peak value of single carrier is 1.485 Gbit/s
· For 3 ms + 2 ms dual-period frame structure, the theoretical downlink peak value of single carrier is 1.745 Gbit/s.
· For 1 ms single-period frame structure, the theoretical downlink peak value of single carrier is 1.17 Gbit/s
· For 2.5 ms single-period (3U1D) frame structure, the theoretical downlink peak value of single carrier is 0.78 Gbit/s
· For 2.5 ms single-period (1U3D) frame structure, the theoretical downlink peak value of single carrier is 1.72 Gbit/s
The frame structure is defined in 6.1.1.3
Uplink peak rate The calculation is conducted according to the maximum uplink 2-layer MIMO, maximum carrier bandwidth of 100 MHz and carrier spacing of 30kHz of the UE:
· For 5 ms single-period frame structure, the theoretical uplink peak value of single carrier is 190Mbit/s (64QAM) or 253Mbit/s (256QAM)
· For 2.5 ms dual-period frame structure, the theoretical uplink peak of single carrier is 285Mbit/s (64QAM) or 380Mbit/s (256QAM)
· For 3 ms + 2 ms dual-period frame structure, the theoretical uplink peak value of single carrier is 190Mbit/s (64QAM) or 253Mbit/s (256QAM)
· For 1 ms single-period frame structure, the theoretical uplink peak value of single carrier is 405Mbit/s (64QAM) or 540Mbit/s (256QAM)
· For 2.5 ms single-period (3U1D) frame structure, the theoretical uplink peak value of single carrier is 571Mbit/s (64QAM) or 760Mbit/s (256QAM)
· For 2.5 ms single-period (1U3D) frame structure, the theoretical uplink peak value of single carrier is 190Mbit/s (64QAM) or 253Mbit/s (256QAM)
The frame structure is defined in 6.1.1.3
5.1.2 SA operating mode
The UE adopts EN-DC dual connectivity in NSA operating mode. When its NR connection supports uplink single antenna transmission and downlink four antenna reception, the transmission capacity of this type of UE shall meet the requirements of Table 4.
Table 4 Transmission Capability Requirements of UE for NR Single Transmission and Four Reception (1T4R) in EN-DC Dual Connectivity Mode
NR Key Parameters Requirements
Downlink Downlink waveform CP-OFDM
Maximum carrier bandwidth 100 MHz
Downlink subcarrier spacing 15kHz (at access), 30kHz (at service)
Downlink MIMO transmission Transmission of layers 1, 2 and 4
Demodulation reference signal (DMRS) signal Type 1
Additional DMRS for high-speed moving scenes 1/2 additional DMRS, mandatory
3 additional DMRS, optional
CQI/RI/PMI/CRI measurement of CSI-RS Port 4, Port 8 and Port 16
Downlink modulation scheme QPSK, 16QAM, 64QAM and 256QAM
PDSCH mapping Type Type A, Type B
Allocation method for PDSCH frequency domain resource Type 0 (discontinuous allocation), Type 1 (continuous allocation)
Uplink Uplink waveform CP-OFDM,DFT-S-OFDM
Downlink subcarrier spacing 30kHz
Uplink SIMO transmission Layer 1 transmission
Uplink LTE and NR shunting Support shunting
Demodulation reference signal (DMRS) signal Type 1, Type2
Downlink transmission mode Codebook-based transmission mode
Uplink modulation scheme QPSK, 16QAM, 64QAM and 256QAM
Uplink Allocation method for PUSCH frequency domain resource Type 1 (continuous allocation)
PUSCH mapping type Type A, Type B
NR SRS transmission Port 1
NR SRS antenna handover 1T2R in-turn transmission, mandatory
1T4R in-turn transmission, optional
Downlink peak rate The calculation is conducted according to the maximum downlink 4-layer MIMO, the maximum downlink 256QAM modulation, the maximum carrier bandwidth of 100 MHz and the carrier spacing of 30kHz of UE NR connection:
· For 5 ms single-period frame structure, the theoretical downlink peak value of single carrier is 1.745 Gbit/s
· For 2.5 ms dual-period frame structure, the theoretical downlink peak value of single carrier is 1.485 Gbit/s
· For 3 ms + 2 ms dual-period frame structure, the theoretical downlink peak value of single carrier is 1.745 Gbit/s.
· For 1 ms single-period frame structure, the theoretical downlink peak value of single carrier is 1.17 Gbit/s
· For 2.5 ms single-period (3U1D) frame structure, the theoretical downlink peak value of single carrier is 0.78 Gbit/s
· For 2.5 ms single-period (1U3D) frame structure, the theoretical downlink peak value of single carrier is 1.72 Gbit/s
See 6.1.1.3 for the definition of frame structure
The transmission capability of LTE connection shall meet the requirements of its LTE UE category
Uplink peak rate The calculation is conducted according the maximum uplink 1-layer SIMO transmission, the maximum carrier bandwidth of 100 MHz, and the carrier spacing of 30 kHz of UE NR connection:
· For 5 ms single-period frame structure, the theoretical uplink peak value of single carrier is 95Mbit/s (64QAM) or 127Mbit/s (256QAM)
· For 2.5 ms dual-period frame structure, the theoretical uplink peak of single carrier is 143Mbit/s (64QAM) or 190 Mbit/s (256QAM)
· For 3 ms + 2 ms dual-period frame structure, the theoretical uplink peak value of single carrier is 95 Mbit/s (64QAM) or 127 Mbit/s (256QAM).
· For 1 ms single-period frame structure, the theoretical uplink peak value of single carrier is 203Mbit/s (64QAM) or 270Mbit/s (256QAM)
· For 2.5 ms single-period (3U1D) frame structure, the theoretical uplink peak value of single carrier is 285Mbit/s (64QAM) or 380Mbit/s (256QAM)
· For 2.5 ms single-period (1U3D) frame structure, the theoretical uplink peak value of single carrier is 95Mbit/s (64QAM) or 127Mbit/s (256QAM)
The transmission capability of LTE connection shall meet the requirements of its LTE UE category
5.2 Service Capabilities of UE
5.2.1 SA operating mode
UE supports the following service types, and the corresponding 5QI is shown in Table 5.
Table 5 Service Type Requirements of UE in SA Mode
Service type Requirements Description
Conversational voice (VoNR) Optional 5QI 1 (GBR)
Conversational video (ViNR) Optional 5QI 2(GBR)
Living game or V2X message Optional 5QI 3(GBR)
Non-conversational video Optional 5QI 4(GBR)
IMS signaling Mandatory 5QI 5 (non-GBR)
Buffered video stream Mandatory 5QI 6(non-GBR)
Voice, video and interactive games Optional 5QI 7(non-GBR)
TCP-based data service Mandatory 5QI 8(non-GBR)
Progressive image video and shared data services Mandatory 5QI 9(non-GBR)
If voice service is supported in SA mode, the UE shall support the following functions:
a) EPS Fallback support is mandatory, and VoLTE service is established in LTE cell;
b) VoNR support is optional, that is, VoIMS voice service is borne on 5G NR.
5.2.2 NSA operating mode
The UE supports the following service types, and corresponding QCI is shown in Table 6.?
Table 6 Service Type Requirements of UE in NSA Mode
Service type Requirements Description
Conversational voice (VoLTE) Mandatory QCI 1 (GBR)
Conversational video (ViLTE) Optional QCI 2(GBR)
PS domain conversational video Mandatory QCI 3(GBR)
Stream Optional QCI 4(GBR)
IMS signaling Mandatory QCI 5 (non-GBR)
Interactive games Mandatory QCI 6(non-GBR)
Interactive TCP Optional QCI 7(non-GBR)
Preferred large size TCP data Mandatory QCI 8(non-GBR)
Best effort large size TCP data Mandatory QCI 9(non-GBR)
In EN-DC dual connectivity mode, voice services are carried by LTE, and the UE shall support VoLTE and CSFB voice schemes.
5.3 Support IPv4 and IPv6
The UE shall provide comprehensive support for IPv6. Specific requirements include: supporting PDN/PDP Types such as IPv4, IPv6 and IPv4v6 in SA and NSA modes; and support IPv4, IPv6 header compression function.
5.4 Support SA and NSA modes
The UE shall support both SA and NSA operating modes by default. The UE can log in to SA or NSA network to work according to the actual network deployment and the 4G/5G interoperability strategy of the network.
6 Basic Functional Requirements on Physical Layer
6.1 SA Operating Mode
6.1.1 Parameter set and frame structure
6.1.1.1 Parameter set
The UE supports the OFDM parameter requirements of Table 7.?
Table 7 OFDM Parameter Requirements
μ Δf=2μ·15[kHz] CP length Requirements
0 15 Conventional length CP · Mandatory for initial access;
Optional for data services
1 30 Conventional length CP Mandatory
2 60 Conventional length CP Optional
The UE shall support the time slot symbol configuration of Table 8.
Table 8 Number of OFDM Symbol(s) Contained in Each Time Slot (for Conventional CP)
μ Number of symbols in each time slot ( )
The number of time slots in each frame ( )
The number of time slots in each subframe ( )
Requirements
0 14 10 1 Optional
1 14 20 2 Mandatory
2 14 40 4 Optional
6.1.1.2 Signal waveform
The UE shall support the NR signal waveform requirements of Table 9.
Table 9 NR Signal Waveform Requirements
Signal waveform Requirements Description
Uplink Mandatory Support CP-OFDM waveform
Mandatory Support DFT-S-OFDM waveform
Downlink Mandatory Support CP-OFDM waveform
6.1.1.3 Frame structure
The UE shall support the frame structure requirements of Table 10.
Foreword i
1 Scope
2 Normative References
3 Abbreviations
4 General
4.1 Classification of User Equipment (UE)
4.2 Power Class of UE
4.3 Stand Alone (SA) Operating Mode
4.4 Non-Stand Alone (NSA) Operating Mode
5 Capacity Requirements for UE
5.1 Transmission Capability of UE
5.2 Service Capabilities of UE
5.3 Support IPv4 and IPv
5.4 Support SA and NSA modes
6 Basic Functional Requirements on Physical Layer
6.1 SA Operating Mode
6.2 NSA Operating Mode
7 Basic Functional Requirements for Layer
7.1 SA Operating Mode
7.2 NSA Operating Mode
8 Basic Functional Requirements of RRC Layer
8.1 SA Operating Mode
8.2 NSA Operating Mode
9 Requirements for the NAS Layer Basic Function
9.1 SA Operating Mode
9.2 NSA Operating Mode
10 Requirements for RF Indexes
10.1 Working Band of NR
10.2 Channel Bandwidth of NR
10.3 NR Channel Spacing
10.4 NR Channel Raster
10.5 NR Synchronization Raster
10.6 Index Requirements for SA Mode Transmitter
10.7 Index Requirements for SA Mode Receiver
10.8 Requirements for Radio Frequency of EN-DC Devices
11 Uplink Enhancement (Optional)
11.1 Basic Functions of Uplink Spectrum Sharing
11.2 Uplink Spectrum Sharing in EN-DC Scenarios
12 5G Network Identity Display Requirements in NSA Mode
13 Requirements for Power Consumption
14 Requirements for Interface
14.1 NR Uu Interface Requirements
14.2 LTE Uu Interface Requirements
14.3 USIM-ME Interface Requirements
15 Safety Requirements
15.1 Safety Requirements for SA Mode
15.2 Safety Requirements for NSA Mode
ICS 33.060.99
M36
中華人民共和國通信行業標準
YD/T 3627—2019
5G數字蜂窩移動通信網 增強移動寬帶
終端設備技術要求(第一階段)
5G digital cellular mobile telecommunication network-
technical requirements of eMBB user equipment(Phase 1)
2019-12-24發布 2019-12-24實施
中華人民共和國工業和信息化部 發布
前言
本標準是5G數字蜂窩移動通信網增強移動寬帶終端設備第一階段系列標準之一,該系列標準的結構和名稱預計如下:
a)YD/T 3627—2019《5G數字蜂窩移動通信網 增強移動寬帶終端設備技術要求(第一階段)》;
b)《5G數字蜂窩移動通信網 增強移動寬帶終端設備測試方法(第一階段)》。
隨著技術的發展,還將制定后續的相關標準。
本標準按照GB/T 1.1-2009給出的規則起草。
請注意本文件的某些內容可能涉及專利。本文件的發布機構不承擔識別這些專利的責任。
本標準由中國通信標準化協會提出并歸口。
本標準起草單位:中國信息通信研究院、中國移動通信集團有限公司、中國電信集團有限公司、中國聯合網絡通信集團有限公司、華為技術有限公司、北京小米移動軟件有限公司、OPPO廣東移動通信有限公司、維沃移動通信有限公司、聯發博動科技(北京)有限公司、北京展訊高科通信技術有限公司、中興通訊股份有限公司、高通無線通信技術(中國)有限公司、國家無線電監測中心檢測中心、大唐電信科技產業集團(電信科學技術研究院)、英特爾(中國)有限公司、上海諾基亞貝爾股份有限公司、鼎橋通信技術有限公司、北京三星通信技術研究有限公司。
本標準主要起草人:李星、陸松鶴、金晨光、何偉俊、張諾亞、周晶、師瑜、沈麗、劉洋、楊寧、張元(維沃移動通信有限公司)、王韻淇、師延山、馬偉、陳書平、袁博、邢艷萍、張元(英特爾(中國)有限公司)、賀敬。
5G數字蜂窩移動通信網 增強移動寬帶終端設備技術要求
(第一階段)
1 范圍
本標準規定了6GHz以下頻段5G增強移動寬帶終端設備的傳輸能力、業務能力、基本協議功能、射頻、功耗、接口、安全等方面的要求。
本標準適用于支持增強移動寬帶場景(eMBB)的6GHz以下頻段的面向非獨立組網(Non-Stand Alone)和獨立組網(Stand Alone)的5G終端。
2規范性引用文件
下列文件對于本文件的應用是必不可少的。凡是注日期的引用文件,僅注日期的版本適用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改單)適用于本文件。
YD/T 2575—2016 TD-LTE數字蜂窩移動通信網終端設備技術要求(第一階段)。
YD/T 2577—2013 LTE FDD數字蜂窩移動通信網終端設備技術要求(第一階段)。
3GPP TS 23.501(Release 15)5G系統的系統架構(System Architecture for the 5G System)。
3GPP TS 24.301(Release 15)演進的分組系統(EPS)的非接入層(NAS)協議;第三階段(Non-Access-Stratum(NAS)protocol for Evolved Packet System(EPS);Stage 3)。
3GPP TS 24.501(Release 15)5G系統(5GS)的非接入層(NAS)協議;第三階段(Non-Access-Stratum(NAS)protocol for 5G System(5GS);Stage 3)。
3GPP TS 36.201(Release 15)演進通用陸地無線接入(E-UTRA);LTE物理層;綜述(Evolved Universal Terrestrial Radio Access(E-UTRA):LTE physical layer;General description)。
3GPP TS 36.211(Release 15)演進通用陸地無線接入(E-UTRA);物理信道和調制(Evolved Universal Terrestrial Radio Access(E-UTRA):Physical channels and modulation)。
3GPP TS 36.212(Release 15)演進通用陸地無線接入(E-UTRA);多工和信道編碼(Evolved Universal Terrestrial Radio Access(E-UTRA):Multiplexing and channel coding)。
3GPP TS 36.213(Release 15)演進通用陸地無線接入(E-UTRA);物理層程序(Evolved Universal Terrestrial Radio Access(E-UTRA):Physical layer procedures)。
3GPP TS 36.214(Release 15)演進通用陸地無線接入(E-UTRA);物理層;測量(Evolved Universal Terrestrial Radio Access(E-UTRA):Physical layer;Measurements)。
3GPP TS 36.300(Release 15)演進通用陸地無線接入(E-UTRA)和演進通用陸地無線接入網絡(E-UTRAN);綜述;第2階段(Evolved Universal Terrestrial Radio Access(E-UTRA)and Evolved Universal Terrestrial Radio Access Network(E-UTRAN):Overall description;Stage 2)。
3GPP TS 36.302(Release 15)演進通用陸地無線接入(E-UTRA);物理層提供的服務(Evolved Universal Terrestrial Radio Access(E-UTRA):Services provided by the physical layer)。
3GPPTS 36.304(Release 15)演進通用陸地無線接入(E-UTRA);空閑模式中的用戶設備(UE)程序(Evolved Universal Terrestrial Radio Access(E-UTRA);User Equipment(UE)procedures in idle mode)。
3GPP TS 36.314(Release 15)演進通用陸地無線接入(E-UTRA);層2-測量(Evolved Universal Terrestrial Radio Access(E-UTRA):Layer 2-Measurements)。
3GPP TS 36.321(Release 15)演進通用陸地無線接入(E-UTRA):媒體接入控制(MAC)協議規范(Evolved Universal Terrestrial Radio Access(E-UTRA):Medium Access Control(MAC)protocol specification)。
3GPP TS 36.322(Release 15)演進通用陸地無線接入(E-UTRA):無線鏈路控制(RLC)協議規范(Evolved Universal Terrestrial Radio Access(E-UTRA):Radio Link Control(RLC)protocol specification)。
3GPP TS 36.323(Release 15)演進通用陸地無線接入(E-UTRA);分組數據集中協議(PDCP)規范(Evolved Universal Terrestrial Radio Access(E-UTRA);Packet Data Convergence Protocol(PDCP)specification)。
3GPP TS 36.331(Release 15)演進通用陸地無線接入(E-UTRA);無線資源控制(RRC);協議規范(Evolved Universal Terrestrial Radio Access(E-UTRA);Radio Resource Control(RRC):Protocol specification)。
3GPP TS 37.324(Release 15)演進通用陸地無線接入(E-UTRA)和NR;服務數據應用協議(SDAP)規范(Evolved Universal Terrestrial Radio Access(E-UTRA)and NR;Service Data Adaptation Protocol(SDAP)specification)。
3GPP TS 37.340(Release 15)演進的通用陸地無線接入(E-UTRA);多連接;第二階段(Evolved Universal Terrestrial Radio Access(E-UTRA)and NR;Multi-connectivity;Stage-2)。
3GPP TS 38.101-1(Release 15)新空口(NR);用戶設備(UE)無線發射和接收;第一部分:頻段范圍1獨立組網(NR;User Equipment(UE)radio transmission and reception;Part 1:Range 1 Standalone)。
3GPP TS 38.101-3(Release 15)新空口(NR);用戶設備(UE)無線發射和接收;第三部分:頻段范圍1和頻段范圍2與其他無線技術協作(NR;User Equipment(UE)radio transmission and reception;Part 3:Range 1 and Range 2 Interworking operation with other radios)。
3GPPTS 38.201(Release 15)新空口(NR);物理層;概述(NR;Physical layer;General description)。
3GPP TS 38.202(Release 15)新空口(NR);物理層提供的服務(NR;Services provided by the physical layer)。
3GPPTS 38.211(Release 15)新空口(NR);物理信道和調制(NR;Physical channels and modulation)。
3GPPTS 38.212(Release 15)新空口(NR);復用和信道編碼(NR;Multiplexing and channel coding)。
3GPP TS 38.213(Release 15)新空口(NR);用于控制的物理層過程(NR;Physical layer procedures for control)。
3GPP TS 38.214(Release 15)新空口(NR);用于數據的物理層過程(NR;Physical layer procedures for data)。
3GPP TS 38.215(Release 15)新空口(NR):物理層測量(NR;Physical layer measurements)。
3GPP TS 38.300(Release 15)新空口(NR);概述;第二階段(NR;Overall description;Stage-2)。
3GPP TS 38.304(Release 15)新空口(NR);用戶設備(UE)空閑模式過程(NR;User Equipment(UE)procedures in idle mode)。
3GPP TS 38.306(Release 15)新空口(NR);用戶設備(UE)無線接入能力(NR;User Equipment(UE)radio access capabilities)。
3GPP TS 38.307(Release 15)新空口(NR);用戶設備(UE)支持與版本無關的頻段的要求(NR;Requirements on User Equipments(UEs)supporting a release-independent frequency band)。
3GPP TS 38.321(Release 15)新空口(NR);媒體訪問控制協議(MAC)規范(NR;Medium Access Control(MAC)protocol specification)。
3GPP TS 38.322(Release 15)新空口(NR):無線鏈路控制協議(RLC)規范(NR;Radio Link Control(RLC)protocol specification)。
3GPP TS 38.323(Release 15)新空口(NR);分組數據匯聚協議(PDCP)規范(NR;Packet Data Convergence Protocol(PDCP)specification)。
3GPP TS 37.324(Release 15)新空口(NR);業務數據協議(SDAP)規范(NR;Service Data Protocol(SDAP)specification)。
3GPP TS 38.33l(Release 15)新空口(NR);無線資源控制協議(RRC)規范(NR;Radio Resource Control(RRC):Protocol specification)。
3GPP TS 38.401(Release 15)新一代無線網(NG-RAN);架構概述(NG-RAN;Architecture description)。
3縮略語
下列符號和縮略語適用于本文件。
ACK Acknowledgement 肯定確認
AM Acknowledgement Mode 確認模式
AMC Adaptive Modulation and Coding 自適應調制和編碼
ARQ Automatic Repeat-reQuest 自動重傳請求
BBU BaseBand Unit 基帶單元
BCCH Broadcast Control CHannel 廣播控制信道
BCH Broadcast CHannel 廣播信道
BER Bit Error Ratio 誤碼率
BLER Block Error Ratio 誤塊率
BIT/SK Binary Phase Shift Keying 二相相移鍵控
CCCH Common Control CHannel 公共控制信道
CCE Control Channel Element 控制信道粒子
CMAS Commercial Mobile Alert Service 商用移動預警服務
CP Cyclic Prefix 循環前綴
CPE Customer Premise Equipment 客戶終端設備
CQI Channel Quality Indicator 信道質量指示
CRC Cyclic Redundancy Check 循環冗余校驗
CSI Channel State Information 信道狀態信息
DCCH Dedicated Control Channel 專用控制信道
DCI Downlink Control Information 下行控制信息
DFT-S-OFDM DFT-Spread OFDM DFT擴展OFDM
DL Downlink 下行
DL-SCH Downlink Shared Channel 下行共享信道
DRX Discontinuous Reception 不連續接收
DTX Discontinuous Transmission 不連續發送
eNodeB(eNB) Evolved NodeB LTE基站
EPC Evolved Packet Core network 演進型分組核心網
EWTS Earthquake and Tsunami Warning System 地震/海嘯警告系統
GBR Guaranteed Bit Rate 保證比特率
GP Guard Period 保護時隙
GPS Global Positioning System 全球定位系統
HARQ Hybrid Automatic Repeat-reQuest 混合自動重傳請求
IR Incremental Redundancy 增量冗余
LTE Long Term Evolution 長期演進
MAC Media Access Control 媒體接入控制
MCS Modulation and Coding Scheme 調制編碼方式
MIB Master Information Block 主信息塊
MiFi Mobile Wi-Fi Hotspot 移動無線熱點終端
MIMO Multiple Input Multiple Output 多入多出
NACK Negative Acknowledgement 否定確認
NSA Non-Standalone 非獨立組網
OFDMA Orthogonal Frequency Division Multiple Access 正交頻分多址
PBCH Physical Broadcast Channel 物理廣播信道
PCCH Paging Control Channel 尋呼控制信道
PCH Paging Channel 尋呼信道
PDCCH Physical Downlink Control Channel 物理下行控制信道
PDCP Packet Data Convergence Protocol 分組數據匯聚協議
PDSCH Physical Downlink Shared Channel 物理下行共享信道
PDU Packet Data Unit 分組數據單元
PHY Physical layer 物理層
PLMN Public Lands Mobile Network 公眾陸地移動通信網
PMI Precoding matrix indicator 預編碼矩陣指示符
PRACH Physical Random Access Channel 物理隨機接入信道
PRB Physical Resource Block 物理資源塊
PUCCH Physical Uplink Control Channel 物理上行控制信道
PUSCH Physical Uplink Shared Channel 物理上行共享信道
PSS Primary Synchronization Signal 主同步信號
QAM Quadrature Amplitude Modulation 正交調幅
QPSK Quatemary Phase Shift Keying 四相移相鍵控
RACH Random Access Channel 隨機接入信道
RAT Radio Access Technology 無線接入技術
RB Radio Bearer 無線承載
REG RE Group RE組
RI Rank Indicator 秩指示
RLC Radio Link Control 無線鏈路控制
RNTI Random Access Radio Network Temporary Identifier 隨機接入無線網絡臨時標識
ROHC Robust Header Compression 可靠頭壓縮
RRC Radio Resource Control 無線資源控制
RRU Radio Remote Unit 無線遠端單元
RS Reference Signal 參考信號
RSRP RS Received Power RS接收功率
RSRQ RS Received Quality RS接收質量
RV Redundancy Version 冗余版本
SA Standalone 獨立組網
SC-FDMA Single Carrier FDMA 單載波頻分多址
SCH Synchronization Channel 同步信道
SDU Service Data Unit 業務數據單元
SIB System Information Block 系統信息塊
SRS Sounding Reference Signal 信道探測參考信號
SSS Secondary Synchronization Signal 輔同步信號
SUL Supplementary uplink 補充上行
TA Timing Advance 時間提前量
TDD Time Division Duplex 時分雙工
TM Transparent Mode 透明模式
TPC Transmit Power Control 發送功率控制
TTI Transmission Time Interval 發送時間間隔
UCI Uplink Control Information 上行控制信息
UE User Equipment 用戶設備
UL Uplink 上行
UL-SCH Uplink Shared Channel 上行共享信道
UM Un-acknowledgement Mode 非確認模式
UTC Coordinated Universal Time 世界標準時間
URSP UE Route Selection Policy 終端路由選擇策略
VoIMS Voice Over IMS IMS承載語音方案
VoLTE Voice Over LTE LTE承載語音方案
4概述
4.1 UE的分類
根據終端的尺寸和使用范圍,大致可將終端進行以下分類:
—語音數據類終端:既能支持電路域或分組域語音,也能支持分組域承載業務的終端設備,如手機類手持終端;
—數據類終端:不支持CS域語音業務,支持分組域承載業務的終端設備;如Wi-Fi、數據卡、CPE等。
4.2 UE的功率等級
UE的功率等級是按所有蜂窩天線的最大輸出功率來定義的,見表1。
表1 UE的功率等級
功率等級 最大輸出功率 要求
2 +26dBm SA工作模式時,必選
3 +23dBm NSA工作模式時,必選
4.3獨立組網(SA)工作模式
SA模式應支持Option2。在該模式下,終端通過NR空口接入連接5G核心網的5G基站(gNB)。Option2組網架構示意如圖1所示。
圖1 Option2組網架構示意
4.4非獨立組網(NSA)工作模式
NSA模式應支持Option3a和Option 3x,如圖2所示。在該模式下,終端通過LTE空口和NR空口雙連接方式接入連接4G核心網的4G基站(eNB)和5G基站(gNB),其中4G基站為主站(MN)、5G基站為輔站。
圖2 Option3a/3x組網架構示意
5 UE的能力要求
5.1 UE的傳輸能力
5.1.1 SA工作模式
根據終端的上行能力配置,SA工作模式下終端分為兩種類型:
—類型1終端:支持上行單發、支持SRS輪發1T2R、支持HPUE(單天線26dBm)、支持上行256QAM調制;
—類型2終端:支持上行雙發、支持SRS輪發2T4R、支持HPUE(雙天線23+23dBm)、支持上行256QAM調制。
SA工作模式類型1終端的傳輸能力應滿足表2的要求。
表2 SA工作模式類型1終端傳輸能力要求