GB/T 24610 covers the following four parts under the general title Rolling Bearings - Measuring Methods for Vibration:
——Part 1: Fundamentals;
——Part 2: Radial Ball Bearings with Cylindrical Bore and Outside Surface;
——Part 3: Radial Spherical and Tapered Roller Bearings with Cylindrical Bore and Outside Surface;
——Part 4: Radial Cylindrical Roller Bearings with Cylindrical Bore and Outside Surface.
This part is Part 2 of GB/T 24610.
This part is developed in accordance with the rules given in GB/T 1.1-2009.
This part replaces GB/T 24610.2-2009 Rolling bearings - Measuring methods for vibration - Part 2: Radial ball bearings with cylindrical bore and outside surface, and the following main technical changes are made made with respect to GB/T 24610.1-2009:
——The part of the expression "rotational frequency" is modified (see 4.1, 4.1 of Edition 2009);
——The representation of the symbol "root mean square vibration velocity" is modified (see 5.1, 5.1 of Edition 2009);
——The "Examples of frequency ranges for non-standard rotational frequencies" table is added (see Table 3);
——Some graphs are modified and the illustration of the graph is added (see Figure 2, Figure 3 and Figure A.1; Figure 2, Figure 3 and Figure A.1 of Edition 2009);
——The "bearing cleanliness, lubrication, operator requirements" is deleted (see 6.1.2, 6.1.3, 6.4 of Edition 2009);
——The requirement of "non-prelubricated bearings" is added (see 6.1.2);
This part is identical with International Standard ISO 15242-2:2015 Rolling bearings - Measuring methods for vibration - Part 2: Radial ball bearings with cylindrical bore and outside surface.
The Chinese documents identical to the normative international documents given in this part are as follows:
——GB/T 1800.2-2009, Geometrical Product Specifications (GPS) - Limits and Fits - Part 2: Tables of Standard Tolerance Grades and Limit Deviations for Holes and Shafts (ISO 286-2:1988, MOD)
——GB/T 2298-2010, Mechanical Vibration, Shock and Condition Monitoring - Vocabulary (ISO 2041:2009, IDT);
——GB/T 6930-2002, Rolling Bearings - Vocabulary (ISO 5593:1997, IDT)
——GB/T 24610.1-2019, Rolling bearings - Measuring methods for vibration Part 1: Fundamentals ( ISO 15242-1:2015, IDT)
This standard was proposed by the China Machinery Industry Federation.
This part is under the jurisdiction of the National Technical Committee on Rolling Bearing of Standardization Administration of China (SAT/TC 98).
The previous editions of this part are as follows:
——GB/T 24610.2-2009.
Introduction
Vibration in rotating rolling bearings can be of importance as an operating characteristic of such bearings. The vibration can affect the performance of the mechanical system incorporating the bearing and can result in audible noise when the vibration is transmitted to the environment in which the mechanical system operates, can lead to damages, and can even create health problems.
Vibration of rotating rolling bearings is a complex physical phenomenon dependent on the conditions of operation. Measuring the vibration of an individual bearing under a certain set of conditions does not necessarily characterize the vibration under a different set of conditions or when the bearing becomes part of a larger assembly. Assessment of the audible sound generated by the mechanical system incorporating the bearing is further complicated by the influence of the interface conditions, the location and orientation of the sensing device, and the acoustical environment in which the system operates. Assessment of airborne noise, which for the purpose of GB/T 24610 (all parts) can be defined as any disagreeable and undesired sound, is further complicated by the subjective nature of the terms disagreeable and undesired. Structure-borne vibration can be considered the driving mechanism that ultimately results in the generation of airborne noise. Only selected methods for the measurement of the structure-borne vibration of rotating rolling bearings are addressed in GB/T 24610 (all parts).
Vibration of rotating rolling bearings can be assessed by a number of means using various types of transducers and measurement conditions. No simple set of values characterizing the vibration of a bearing is adequate for the evaluation of the vibratory performance in all possible applications. Ultimately, a knowledge of the type of bearing, its application and the purpose of the vibration measuring (e.g. as a manufacturing process diagnostic or an assessment of product quality) is required to select the most suitable method for measuring. The field of application for standards on bearing vibration is therefore not universal. However, certain methods have established a wide enough level of application to be considered as standard methods.
This part serves to define the detailed method for assessing vibration of radial ball bearings with cylindrical bore and outside surface on a measuring device.
Rolling bearings - Measuring methods for vibration
Part 2: Radial ball bearings with cylindrical bore and outside surface
1 Scope
This part of GB/T 24610 specifies vibration measuring methods for single-row and double-row radial ball bearings, with a contact angle up to and including 45°.
It applies to radial ball bearings with cylindrical bore and outside surface.
It does not apply to bearings with filling slots and three- and four-point-contact ball bearings.
2 Normative references
The following documents, in whole or in part, are normatively referenced in this document and are indispensable for its application. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.
ISO 286-2 Geometrical product specifications (GPS) - ISO code system for tolerances on linear sizes - Part 2: Tables of standard tolerance classes and limit deviations for holes and shafts
ISO 2041:2009 Mechanical vibration, shock and condition monitoring - Vocabulary ISO 5593, Rolling bearings - Vocabulary
ISO 5593 Rolling bearings - Vocabulary
ISO 15242-1:2015 Rolling bearings - Measuring methods for vibration - Part 1:Fundamentals
3 Terms and definitions
For the purposes of this document, the terms and definitions given in ISO 2041, ISO 5593 and ISO 15242-1 apply.
4 Measurement process
4.1 Rotational frequency
The default rotational frequency shall be 1800 min?1 (30 s?1). The tolerance shall be of the nominal rotational frequency.
Other rotational frequencies and tolerances may be used by agreement between the manufacturer and the customer, for example, it may be necessary to use a higher rotational frequency for bearings in the smaller size range (e.g. 3600 min?1) in order to obtain an adequate vibration signal. Conversely, it may be necessary to use a lower rotational frequency for bearings in the larger size range (e.g. 700 min?1) to avoid possible ball and raceway damage.
4.2 Bearing axial load
The bearing load shall be in the axial direction with default values as specified in Table 1.
Table 1 Default values for bearing axial load
Bearing outside diameter
D Single-row and double-row deep groove and self-aligning radial ball bearings Single-row and double-row angular contact radial ball bearings
10° < Contact angle ≤ 23° 23° < Contact angle ≤ 45°
Default values for axial load
> ≤ min. max. min. max. min. max.
mm N N N
10 25 18 22 27 33 36 44
25 50 63 77 90 110 126 154
50 100 135 165 203 247 270 330
100 140 360 440 540 660 720 880
140 170 585 715 878 1072 1170 1430
170 200 810 990 1215 1485 1620 1980
Other axial loads and tolerances may be used by agreement between the manufacturer and the customer, for example, depending on bearing design, rotational frequency and lubricant used, it may be necessary to use a higher load to prevent ball/raceway slip or a lower load to avoid possible ball and raceway damage.
5 Measurement and evaluation methods
5.1 Physical quantity measured
The default physical quantity to be measured is root mean square vibration velocity, νrms(μm/s), in the radial direction.
5.2 Frequency domain
The vibration velocity shall be analysed in one or more bands with default frequency ranges as specified in Table 2.
Table 2 Default Frequency ranges for default rotational frequency of 1 800 min?1
Rotational frequency Low band (L) Medium band (M) High band (H)
Nominal band pass frequencies
min. max. flow fupp flow fupp flow fupp
min?1 Hz Hz Hz
1764 1818 50 300 300 1800 1800 10000
Other frequency ranges may be considered by agreement between the manufacturer and the customer in those instances where specific ranges have greater importance to successful operation of the bearing. Common used examples are listed in Table 3.
Changing the frequency of rotation should always come along with a proportional change of the filter frequencies and acceptance limits and minimum measuring time. Examples are given in Table 3.
Table 3 Examples of frequency ranges for non-standard rotational frequencies
Rotational frequency Low band (L) Medium band (M) High band (H)
Nominal band pass frequencies
nominal min. max. flow fupp flow fupp flow fupp
min?1 Hz Hz Hz
3600 3528 3636 100 600 600 3600 3600 20000
900 882 909 25 150 150 900 900 5000
700a 686 707 20 120 120 700 700 4000
a In case of 700 min?1, cut-off frequencies are rounded (not according to exact relation of the rotational frequency).
Narrow band spectral analysis of the vibration signal may be considered as a supplementary option.
5.3 Measurement of pulses and spikes
Detection of pulses or spikes in the time domain velocity signal, usually due to surface defects and/or contamination in the measured bearing, may be considered as a supplementary option. Various evaluation methods exist.
5.4 Measurement
All bearings, except for single-row angular contact ball bearings, shall be measured with the axial load applied from one side of the stationary ring and the measurement repeated with the axial load on the other side of the stationary ring. Single-row angular contact ball bearings shall be measured in their foreseen axial load carrying direction only.
Foreword I
Introduction III
1 Scope
2 Normative references
3 Terms and definitions
4 Measurement process
4.1 Rotational frequency
4.2 Bearing axial load
5 Measurement and evaluation methods
5.1 Physical quantity measured
5.2 Frequency domain
5.3 Measurement of pulses and spikes
5.4 Measurement
6 Conditions for measurement
6.1 Bearing conditions for measurement
6.2 Conditions of the measurement environment
6.3 Conditions for the measuring device
Annex A (normative) Measurement of external axial loading alignment
ICS 21.100.20
J 11
GB
中華人民共和國國家標準
GB/T 24610.2—2019/ISO 15242-2:2015
代替GB/T 24610.2—2009
滾動軸承 振動測量方法
第2部分:具有圓柱孔和圓柱外表面的向心球軸承
Rolling bearings—Measuring methods for vibration—Part 2:Radial ball bearings with cylindrical bore and outside surface
(ISO 15242-2:2015,IDT)
2019-10-18發布 2020-05-01實施
國家市場監督管理總局
中國國家標準化管理委員會 發布
前言
GB/T 24610《滾動軸承 振動測量方法》分為4個部分:
——第1部分:基礎;
——第2部分:具有圓柱孔和圓柱外表面的向心球軸承;
——第3部分:具有圓柱孔和圓柱外表面的調心滾子軸承和圓錐滾子軸承;
——第4部分:具有圓柱孔和圓柱外表面的圓柱滾子軸承。
本部分為GB/T 24610的第2部分。
本部分按照GB/T 1.1—2009給出的規則起草。
本部分代替GB/T 24610.2—2009《滾動軸承 振動測量方法 第2部分:具有圓柱孔和圓柱外表面的向心球軸承》,與GB/T 24610.2—2009相比,主要技術變化如下:
——修改了“旋轉頻率”的部分表述(見4.1,2009年版的4.1);
——修改了“均方根振動速度”符號的表示方法(見5.1,2009年版的5.1);
——增加了“非設定旋轉頻率的頻率范圍示例”表(見表3);
——修改了部分圖形并增加了圖的說明(見圖2、圖3、圖A.1,2009年版的圖2、圖3、圖A.1);
——刪除了“軸承的清潔度、潤滑、對操作者的要求”(見2009年版的6.1.2、6.1.3、6.4);
——增加了“非預潤滑軸承”的要求(見6.1.2)。
本部分使用翻譯法等同采用ISO 15242-2:2015《滾動軸承 振動測量方法 第2部分:具有圓柱孔和圓柱外表面的向心球軸承》。
與本部分中規范性引用的國際文件有一致性對應關系的我國文件如下:
——GB/T 1800.2—2009產品幾何技術規范(GPS) 極限與配合 第2部分:標準公差等級和孔、軸極限偏差表(ISO 286-2:1988,MOD)
——GB/T 2298—2010機械振動、沖擊與狀態監測 詞匯(ISO 2041:2009,IDT)
——GB/T6930—2002滾動軸承 詞匯(ISO 5593:1997,IDT)
——GB/T24610.1—2019滾動軸承 振動測量方法 第1部分:基礎(ISO 15242-1:2015,IDT)
本部分由中國機械工業聯合會提出。
本部分由全國滾動軸承標準化技術委員會(SAC/TC 98)歸口。
本部分所代替標準的歷次版本發布情況為:
——GB/T 24610.2—2009。
引言
滾動軸承旋轉時的振動是其一個重要運轉特性。振動會影響裝有軸承的機械系統的性能,當振動向運轉的機械系統所處的環境傳播時會引起可聞噪聲,進而會導致系統損傷,甚至會造成健康問題。
滾動軸承旋轉時的振動是與運轉條件有關的一種復雜的物理現象。在某一組條件下測量的單套軸承的振動值并不一定表征不同的條件下或該軸承成為一較大部件中的一個零件時的振動值。評定裝有軸承的機械系統產生的聲響就更加復雜,它還受界面條件、感應裝置的位置和方向以及系統運轉所處聲學環境的影響。空氣噪聲——GB/T 24610(所有部分)定義為任何令人不愉快的、不希望有的聲音,由于術語“令人不愉快的、不希望有的”具有主觀特性,因而其評定更為復雜。可以認為軸承的結構振動是最終導致空氣噪聲產生的驅動源。
GB/T 24610(所有部分)僅列入了經過選擇的軸承結構振動的測量方法。
軸承振動可采用許多方法中的任一種來評定,不同的評定方法使用不同類型的傳感器和測試條件。沒有任何一組表征軸承振動的數值能夠對所有可能的使用條件下的軸承振動性能進行評定。最終,還應根據已知的軸承類型、使用條件以及振動測試目的(例如,是作為制造過程診斷,或是作為產品質量評定)等,來選擇最適用的測試方法。因此,軸承振動標準的適用范圍并不是通用的。但對于本部分而言,只將某些適用范圍十分廣泛的方法確立為標準方法。
本部分詳細規定了在測試裝置上評定具有圓柱孔和圓柱外表面的向心球軸承振動的方法。
滾動軸承 振動測量方法
第2部分:具有圓柱孔和圓柱外表面的向心球軸承
1 范圍
GB/T 24610的本部分規定了在所確立的測試條件下,接觸角不大于45°的單列和雙列向心球軸承的振動測量方法。
本部分適用于具有圓柱孔和圓柱外表面的向心球軸承。
本部分不適用于具有裝填槽的軸承和三點、四點接觸球軸承。
2 規范性引用文件
下列文件對于本文件的應用是必不可少的。凡是注日期的引用文件,僅注日期的版本適用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改單)適用于本文件。
ISO 286-2 產品幾何技術規范(GPS) 線性尺寸公差ISO代號體系 第2部分;標準公差等級和孔、軸極限偏差表[Geometrical product specifications (GPS)—ISO code system for torlerances on linear sizes—Part2:Tables of standard tolerance grades and limit deviations for holes and shafts.]
ISO 2041:2009機械振動、沖擊與狀態監測詞匯(Mechanical vibration,shock and condition monitoring—Vocabulary)
ISO 5593 滾動軸承 詞匯( Rolling bearings—Vocabulary)
ISO 15242-1:2015 滾動軸承 振動測量方法 第1部分:基礎( Rolling bearings—Measuring methods for vibration—Part 1:Fundamentals)
3 術語和定義
ISO 2041、ISO 5593和ISO 15242-1界定的術語和定義適用于本文件。
4 測量程序
4.1 旋轉頻率
旋轉頻率的設定值為1800min-1(30s-1),其偏差為標稱旋轉頻率的 。
經制造廠與用戶協商,也可采用其他旋轉頻率和偏差。例如,對于較小尺寸段的軸承,可以采用較高的旋轉頻率(如3600min-1),以便獲得合適的振動信號。反之,對于較大尺寸段的軸承,可以采用較低的旋轉頻率(如700min-1),以避免球和滾道可能產生的損傷。
4.2 軸承軸向載荷
應對軸承施加軸向載荷,其設定值規定在表1中。
表1 軸承軸向載荷的設定值
軸承外徑D 單列和雙列深溝和調心向心球軸承 單列和雙列角接觸向心球鈾承
10°<接觸角≤23° 23°<接觸角≤45°
> ≤ 軸向載荷的設定值
min. max. min. max. min. max.
mm N N N
經制造廠與用戶協商,也可采用其他軸向載荷及偏差。例如,根據軸承結構、旋轉頻率以及所使用的潤滑劑,可以采用更高的載荷以防止球與滾道產生打滑;或采用更低的載荷以避免球和滾道可能產生的損傷。
5 測量和評定方法
5.1 測量的物理量
測量時設定的物理量為徑向均方根振動速度,vrms(μm/s)。
5.2 頻域
振動速度應在一個或多個頻帶內、如表2中所規定的設定的頻率范圍內分析。
表2 旋轉頻率1800min-1的設定頻率范圍
旋轉頻率 低頻帶(L) 中頻帶(M) 高頻帶(H)
min. max. 標稱頻帶
flow fupp flow fupp flow fupp
min-1 Hz Hz Hz
如果某一特定的頻率范圍對軸承獲得良好運轉極為重要時,經制造廠與用戶協商,也可以采用其他的頻率范圍,常用的特定頻率范圍示例見表3。
旋轉頻率應根據濾波器頻率的比例變化、可接收限值和最小測量時間進行改變,示例見表3。
表3 非設定旋轉頻率的頻率范圍示例
旋轉頻率 低頻帶(L) 中頻帶(M) 高頻帶(H)
標稱 min. max. 標稱頻帶
flow fupp flow fupp flow fupp
min-1 Hz Hz Hz
3600 3528 3636 100 600 600 3600 3600 20000
900 882 909 25 150 150 900 900 5000
700a 686 707 20 120 120 700 700 4000
a 旋轉頻率為 700min-1時,截止頻率進行了圓整(未嚴格按與旋轉頻率之間的關系)。
振動信號的窄帶頻譜分析可作為補充選項。
5.3 脈沖和尖銳脈沖測量
被測軸承中的表面缺陷和/或污染常常造成時域速度信號的脈沖或尖銳脈沖,可以考慮將脈沖或尖銳脈沖的檢測作為一種補充選項。可以采用不同的評定方法。
5.4 測試
除單列角接觸球軸承外,所有軸承在測試時,應在靜止套圈的一側施加軸向載荷,然后在靜止套圈的另一側施加軸向載荷進行重復測試。單列角接觸球軸承應僅在其預知的軸向承載方向上進行測試。
每個頻帶的最大振動示值應在極限值內。
用于診斷分析時,應在軸承靜止套圈相對于傳感器的不同角位置處進行多點測量。測試持續時間按ISO15242-1:2015中6.5的規定。
6 測量條件
6.1 軸承的測量條件
6.1.1 預潤滑軸承
預潤滑(脂潤滑、油潤滑或固體潤滑)軸承,包括密封軸承和防塵軸承,應在供貨狀態下測試。
6.1.2 非預潤滑軸承
由于污染物影響振動水平,因此,軸承應進行有效的清洗,注意不要引入污染物或其他振源。
注:某些防銹劑可滿足振動測試的潤滑要求,此時不必清除防銹劑。
非預潤滑軸承應根據軸承類型和大小,使用公稱運動黏度在10mm2/s~100mm2/s之間并經精細過濾的潤滑油進行充分潤滑。
潤滑過程中應進行試運轉,以使軸承內的潤滑劑均勻分布。
6.2 測試環境條件
軸承應在不影響振動的環境中進行測試。
6.3 測量裝置條件
6.3.1 主軸/心軸的剛度
用于支承和驅動軸承的主軸(包括心軸)的結構,不僅可傳遞旋轉運動,而且還可作為旋轉軸線的剛性參照系。在使用的頻帶范圍內,主軸/心軸和軸承之間振動的傳遞與所測量的振動速度相比,可以忽略不計。
6.3.2 加載機構
用于對軸承被測套圈施加載荷的加載機構的結構,應使套圈在所有方向——徑向、軸向、角向或撓曲型(視軸承類型而定)的振動本質上處于自由振動狀態,并能夠保證軸承的正常運轉。
6.3.3 軸承外加載荷的大小和對中精度
施加于軸承靜止套圈上的恒定外加軸向載荷的大小規定在4.2中。
由于各機械零件的接觸而引起的軸承套圈變形與被測軸承自身的幾何精度相比,可忽略不計。
外加載荷的位置和方向應與主軸旋轉軸線重合,其偏差應在圖1和表4所規定的范圍內。測量方法按附錄A的規定。
a 外加載荷的軸線。
b 軸承內圈旋轉軸線。
c 外加載荷軸線與軸承內圈旋轉軸線的徑向和角度偏差(見表4)。
圖1 載荷軸線相對于軸承內圈旋轉軸線的偏差
表4 載荷軸線相對于軸承內圈旋轉軸線的偏差值
軸承外徑
D 與軸承內圈旋轉軸線間的徑向偏差
H
max. 與軸承內圈旋轉軸線間的角度偏差
β
max.
> ≤
mm mm (°)
10 25 0.2 0.5
25 50 0.4
50 100 0.8
100 140 1.6
140 170 2.0
170 200 2.5
6.3.4 傳感器的軸向位置和測量方向
傳感器的定位如下:
設定的軸向位置:在靜止套圈的外表面上且對應于受載靜止套圈滾道與球接觸中部的平面上(對于靜止外圈,見圖2),軸承制造廠應提供該數據。
說明:
a——傳感器位置和方向。
b——軸向載荷方向。
圖2 振動測量——傳感器設定的位置
另一種位置(深溝球軸承除外):位于靜止套圈寬度的中心,見圖3(這種測點位置可能會產生不同的振動信號)。
說明:
a——傳感器位置和方向。
b——軸向載荷方向。
圖3 振動測量——另一種傳感器測點位置
傳感器的位置確定后,允許的最大軸向位置偏差為:
——外徑D≤70mm時:±0.5mm;
——外徑D>70mm時:±1.0mm。
方向:垂直于旋轉軸線(見圖4)。在任何方向上與徑向中心線的偏差不應超過5°。
a 在任何方向。
圖4 與徑向中心線的偏差
6.3.5 心軸
用于安裝軸承內圈的心軸圓柱表面,其外徑公差應符合ISO 286-2中f5級的規定,且具有最小的幾何誤差,確保心軸以滑配合裝入軸承內孔中。
應控制徑向和軸向跳動,以便不影響測試。跳動應采用ISO 15242-1:2015中附錄C給出的裝置進行測量。
附錄A
(規范性附錄)
外加軸向載荷軸線對中精度的測量
加載機構的偏移量是利用安裝在主軸(見圖A.1)支架上的兩個千分表進行測量的,兩個千分表在軸向間隔一定的距離。主軸應緩慢轉動,千分表可測量加載活塞的徑向跳動。
由兩個千分表測得的徑向跳動應根據測試軸承的軸向位置加以校正,以便能夠與表4規定的極限偏差值進行比較。
說明:
1,2——千分表;
3——安裝千分表的支架;
4——心軸;
5——加載機構。
圖A.1 外加軸向載荷對中精度的測量