Codeofchina.com is in charge of this English translation. In case of any doubt about the English translation, the Chinese original shall be considered authoritative.
This standard is identical to the standard ISO 11042-1:1996 of International Organization for Standardization (ISO).
The following editorial changes have been made with respect to the original ISO 11042-1:1996:
——the contents of the amendment or technical corrigendum of the international standard are incorporated;
——the standard name is changed;
——the informative annexes are added;
——the content on unit conversion is added.
This standard was proposed by National Technical Committee on Combine-cycle Power Generation Unit in Power Industry of Standardization Administration of China.
This standard is under the jurisdiction of and explained by National Technical Committee on Combine-cycle Power Generation Unit in Power Industry of Standardization Administration of China.
During the process of implementing this standard, the relevant comments and recommendations, whenever necessary, can be fed back to the Standardization Center of the China Electricity Council (No.1, 2nd lane, Baiguang Road, Beijing, 100761, China).
Gas turbine-exhaust gas emission: measurement and evaluation
1 Scope
This standard establishes the methods used for the measurement and evaluation of the emission of the exhaust gases from gas turbines and defines appropriate emission terms. It presents requirements for the test environment and instrumentation as well as the quality of measurement and correction of data. This allows uniform judgment of the exhaust emissions. The relationship between the various forms of expressing the exhaust emissions is also given.
The constituents to be measured in accordance with this standard shall be determined by mutual agreement between the parties involved.
This standard is applicable for all gas turbines producing mechanical shaft power and/or which are used as drivers for electrical generation excluding application in aircraft. For installations which include an exhaust gas heat recuperation system, the definitions of this standard can be used as a basis.
This standard is applicable for gas turbines which utilize the open cycle process. It is also applicable as a basis for gas turbines which utilize the semi-closed cycle and gas turbines equipped with free piston compressors or with special heat sources.
This standard can be used as an acceptance test for gas turbine exhaust gas emissions.
2 Normative references
The following documents for the application of this document are essential. Any dated reference, just dated edition applies to this document. For undated references, the latest edition of the normative document (including any amendments) applies.
GB/T 14100-1993 Gas turbines - Acceptance tests (ISO 2314:1989, IDT)
ISO 2533:1975 Standard atmosphere
ISO 5063:1978 Atomizing oil burners of the monobloc type - Testing
ISO 6141:1984 Gas analysis - Calibration gas mixtures - Certificate of mixture preparation
3 Terms and definitions
For the purpose of this standard, the following terms and definitions apply.
3.1
emissions
constituents which enter the environment with the exhaust gas
In this standard, emissions comprise the following:
nitrogen oxides NOx: sum of NO and NO2, expressed as NO2
nitrogen dioxide NO2
carbon monoxide CO
carbon dioxide CO2
sulfur oxides SOx: sum of SO2 and SO3, expressed as SO2
unburned or partially burned hydrocarbon products UHCs: sum of all individual products, expressed as CH4
volatile organic compounds VOCs: UHCs excluding CH4 and C2H6 but expressed as CH4
ammonia NH3
smoke as measured by the Bacharach method according to ISO 5063:1978
solid particles all solid particles produced by the combustion process
3.2
accuracy
the closeness with which a measurement approaches the true value established independently
3.3
calibration gas
high-accuracy reference gas mixture to be used for setting, adjustment and periodic checks of instruments
3.4
concentration
volume fraction φi of the component of interest in the gas mixture, expressed as volume percentage [(% (V/V)] or as parts per million (ppm )
3.5
interference
instrument response due to the presence of a gas or vapour other than the gas or vapour that is to be measured
3.6
linearity
ability of an instrument to respond proportionally to an input signal
3.7
noise
random variation in instrument output not associated with those characteristics of the sample to which the instrument is responding; distinguishable from its drift characteristics
3.8
parts per million; ppm
volumetric concentration of the component i in 106 volume parts of gas mixture
3.9
parts per million carbon; ppmC1
the mole fraction of hydrocarbon multiplied by 106 measured on a “CH4” equivalence basis
1ppm of methane is indicated as 1ppmC1.
Note: to convert ppm concentration of any hydrocarbon to an equivalent ppmC1 value, multiply ppm concentration by the number of carbon atoms per molecule of the gas; e.g. 1ppm propane translates as 3ppmC1 hydrocarbon; 1ppm hexane as 6ppmC1 hydrocarbon.
3.10
repeatability
the closeness with which a measurement upon a given invariant sample can be produced on a short-term basis with no adjustment of the instruments
3.11
resolution
smallest detectable change in a measurement
3.12
response
change in instrument output signal that occurs with change in sample concentration; output signal corresponding to a given sample concentration
3.13
stability/calibration drift
time-related deviations of the output signal of the instrument measuring a calibration gas for a given set point
3.14
relative hydrocarbon response
the different response of the test equipment to the sample hydrocarbon concentrations expressed as equivalent ppmC1, dependent on the class or admixture of classes of hydrocarbon components
3.15
zero air
mixture of oxygen and nitrogen having the same proportion of oxygen as atmospheric air, free from other components
3.16
zero drift
time-related deviation of instrument output from zero set point when it is operating on a gas free of the component to be measured
3.17
zero gas
has to be used in establishing the zero, or no-response, adjustment of an instrument
4 Symbols
See Tables 1 and 2.
Table 1 General symbols
Symbol Term Unit
en Net specific energy, lower calorific value kJ/kg
E Exhaust gas emission value —
EMi Exhaust gas emission value as constituent concentration of component i at 0℃ and 101.3kPa mg/m3
EMi,15,dry Same as EMi, related to an oxygen volumetric concentration of 15% in dry exhaust gas mg/m3
EMi,f Same as EMi, related to consumed fuel energy g/GJ
EMi,p Same as EMi, related to power supplied g/kWh
EP Exhaust gas emission value for solid particles mg/m3
ES Exhaust gas emission value for smoke —
EV Exhaust gas emission value as a volumetric concentration cm3/m3
EVi Exhaust gas emission value as a volumetric concentration of component i cm3/m3
EVi,15,dry Same as EVi, related to an oxygen volumetric concentration of 15% in dry exhaust gas cm3/m3
m Mass kg
M Molar mass kg/kmol
Mtot Total molar mass kg/kmol
n Quantity of component kmol
ni Quantity of component i kmol
ntot Total quantity of components kmol
P Shaft power output of gas turbine kW
qm Mass flow kg/s
qV Volume flow m3/s
Vi Volume of component i m3
Vmn Molar specific volume m3/kmol
Vn,dry Volume of dry exhaust gas at normal conditions a m3
Vn,15,dry Volume of dry exhaust gas at normal conditions related to an oxygen content of 15% m3
Vn,wet Volume of wet exhaust gas at normal conditions a m3
Vtot Total volume of components i m3
xi Partial quantity, equal to ni/ntot 1
z Limiting number 1
Z Real gas factor (compressibility) 1
ρ Density kg/m3
ρpa Density of particle material kg/m3
Volumetric concentration as percentage of CO2 in dry exhaust gas %
Volumetric concentration as percentage of CO2 in dry exhaust gas with stoichiometric combustion of the fuel used %
Volumetric concentration as percentage of water vapour in exhaust gas %
φi,dry Volumetric concentration in dry exhaust gas cm3/m3
φi,wet Volumetric concentration in wet exhaust gas, equal to Vi/Vtot cm3/m3
Volumetric concentration as percentage of O2 in dry exhaust gas %
Note 1: to identify a particular station along the gas path the subscript g is used, e.g. g7. Subscript 7 identifies the turbine outlet (see ISO 2314:1989).
Note 2: in this standard, 15% O2 is used as a typical value; alternative oxygen contents may be used by agreement.
Note 3: the reference temperature of 0℃ is chosen because of available chemical data and evaluation methods.
a Normal pressure: pn=101.3kPa
Normal temperature: tn=0℃
Table 2 Chemical symbols and abbreviations
Symbol Compound
CO Carbon monoxide
CO2 Carbon dioxide
H2O Water
N2 Nitrogen
NH3 Ammonia
NO Nitrogen monoxide
NO2 Nitrogen dioxide
NOx Sum of nitrogen oxides
O2 Oxygen
SO2 Sulfur dioxide
SO3 Sulfur trioxide
SOx Sum of sulfur oxides
UHC Unburned or partially burned hydrocarbon products
VOC Volatile organic compounds
5 Conditions
5.1 Gas turbine and fuel
In connection with gas turbine emissions, the following shall be indicated for the respective measurement conditions:
a) Manufacturer of the gas turbine.
b) Type of gas turbine.
c) Power output and exhaust gas mass flow and/or fuel flow at the conditions at which the emission measurements are taken.
d) Ambient conditions, i.e. pressure, temperature and humidity of the surrounding air.
e) Fuel details.
f) Equipment in operation which affects the emissions and which is part of the complete system, e.g. catalytic converters, water or steam injection, evaporative coolers, condensers, etc. Relevant details of all flow rates shall be noted.
Note 1: the definition of the power output, the exhaust gas mass flow rate and/or the fuel flow rate, the measurements and calculations shall be defined by agreement between the parties involved (see ISO 2314:1989).
Note 2: Exhaust gas emissions are affected by the fuel characteristics (e.g. fuel-bound nitrogen). Therefore, relevant details of the fuel shall be noted, including appropriate chemical analysis, temperature, physical properties and flow rates
5.2 Measured values
The following values shall be measured:
a) Volumetric concentration of gaseous constituents related to wet exhaust gas (φi,wet) or to dry exhaust gas (φi,dry).
b) Exhaust gas emission value for smoke - Bacharach number (ES) (smoke number according to ISO 2314:1989).
c) Gravimetric concentration of solid particles within the wet exhaust gas (EP), if specifically agreed upon.
Foreword II
1 Scope
2 Normative references
3 Terms and definitions
4 Symbols
5 Conditions
5.1 Gas turbine and fuel
5.2 Measured values
5.3 Standard conditions
6 Measurements
6.1 Determination of constituents in exhaust gas
6.2 Guidelines for the arrangement of the measurement system
6.3 Performing the test, test report, evaluation
7 Instrumentation
7.1 Types of measuring device
7.2 Specification for NOx analysers
7.3 Specification for NO2 analysers
7.4 Specification for SO2 analysers
7.5 Specification for UHC analysers
7.6 Specification for ammonia analysers
7.7 Specification for oxygen analysers
7.8 Specification for smoke analysers
7.9 Specification for solid particle analysers
8 Quality of measurement
8.1 General
8.2 Methods for calibration
9 Conversion of data
9.1 General
9.2 Conversion between wet and dry exhaust gas
9.3 Conversion to the particular exhaust gas oxygen level
9.4 Conversion to the constituent mass flow related to the dry exhaust gas volume flow at normal conditions and to a specific oxygen content
9.5 Conversion to power output related values
9.6 Conversion to consumed fuel energy related values
Annex A (informative) Typical example of test results and their evaluation
Annex B (informative) Information regarding the major constituents of the exhaust gas
Annex C (Informative) Physical properties of gaseous constituents
Bibliography
燃氣輪機煙氣排放測量與評估
1 范圍
本標準建立了燃氣輪機煙氣排放的測量和評價方法,并定義了相應的排放術語。提出了對試驗環境、使用儀器、測量質量以及數據修正的要求,對煙氣排放有了統一的評價標準。同時,也給出了煙氣排放不同表述形式之間的關系。
依據本標準進行煙氣測量時,需要測量的組分由試驗有關各方協商確定。
本標準適用于所有用于機械驅動以及(或)用于發電(用于航空的除外)的燃氣輪機。對于配有余熱回收裝置的系統來說,本標準中的相關定義可作為依據。
本標準適用于采用開式循環的燃氣輪機。對于半開式循環以及配有自由式活塞壓氣機或專門熱源的燃氣輪機,本標準亦可作為依據。
本標準可用于燃氣輪機煙氣排放的驗收試驗。
2規范性引用文件
下列文件對本文件的應用是必不可少的。凡是注日期的引用文件,僅注目期的版本適用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改單)適用于本文件。
GB/T 14100—1993燃氣輪機驗收試驗(ISO 2314:1989,IDT)
ISO 2533:1975標準大氣(Standard atmosphere)
ISO 5063:1978一體式霧化油燃燒器試驗規程(Atomizing oil burners of the monobloc type—Testing)
ISO 6141:1984氣體分析—標定混合氣體—混合氣體制備的合格書(Gas analysis—Calibrationgas mixtures—Certificate of mixture preparation)
3術語和定義
下列術語和定義適用于本標準。
3.1
排放物emissions
是指隨燃氣輪機排氣一起進入大氣環境的組分。
本標準中,排放物包括:
氮氧化物 NOx:NO和NO2以NO2表示
二氧化氮 NO2
一氧化碳 CO
二氧化碳 CO2
硫氧化物 SOx:SO2和SO3以SO2表示
未燃燒或部分燃燒后的碳氫化合物 UHC:所有碳氫化合物之和,以CH4表示
揮發性有機化合物 VOC:UHC中除去甲烷和乙烷的部分,以CH4表示
氨 NH3
煙 根據ISO 5063:1978所述Bacharach方法測量
固體顆粒物 燃燒過程中所產生的固體顆粒物
3.2
準確度 accuracy
測量值與獨立確定的真實值的接近程度。
3.3
標定氣體calibration gas
用于儀表的設定、調整和定期檢查的高準確度的標準混合氣體。
3.4
濃度 concentration
混合氣體各組分的體積分數βi,以體積百分數(%)或者百萬分之一(ppm1))表示。
1)ppm代表ml/m3或cm3/m3。
3.5
干擾interference
除待測量的氣體或蒸汽成分外,由于存在某種其他氣體或蒸汽成分而引起儀器響應。
3.6
線性linearity
儀器對輸入信號成比例響應的能力。
3.7
噪聲(干擾) noise
在儀器輸出中,與正在測量的氣體成分特性無關的隨機變化部分,它與儀器的漂移特性有區別。
3.8
百萬分之幾parts per million;ppm
在混合氣體的106個體積單位中,氣體成分i的體積濃度。
3.9
百萬分之幾的碳parts per million carbon;ppmC1
以“CH4”為度量的等價基準,將碳氫化合物的摩爾比值乘以106得到的數。
1ppm甲烷表示為1ppmC1。
注:為了把任何一種碳氫化合物ppm濃度轉換為等價的ppmC1值,將ppm濃度乘以氣體中每一個分子的碳原子數目。例如1ppm丙烷轉換為3ppmC1碳氫化合物,1ppm己烷轉換為6ppmC1碳氫化合物。
3.10
重復性repeatability
在對儀器不做任何調整情況下,在短期內測量同一樣本所得不同測量值之間的接近程度。
3.11
分辨率 resolution
在某個測量過程中可檢測到的最小變化。
3.12
響應reponse
采樣樣品濃度變化引起的儀器輸出信號的變化,即對應一個給定的樣本濃度的輸出信號。
3.13
穩定性/標定漂移stability/calibration drift
當測量一個給定的整定點校準氣體時,儀器輸出信號隨時間而發生的偏差。
3.14
對碳氫化合物變化的響應relative hydrocarbon response
測試設備對碳氫化合物采樣濃度的不同響應,可用等價的ppmC1表示,它與碳氫化合物成分的類別或其摻合物的類別有關。
3.15
零空氣zero air
氧氣與氮氣的混合物,不含其他成分,與大氣具有相同的氧氣比例。
3.16
零位漂移zero drift
當儀器對不含待測成分的氣體進行測量時,儀器輸出隨時間變化而產生的與零點的偏差。
3.17
零氣zero gas
儀器對其無響應的氣體,用于建立儀器零點調整。
4符號
本標準使用的符號定義見表1和表2。
表1通用符號
符號 術 語 單位
en 凈比能,低位發熱量 kJ/kg
E 煙氣排放值 —
EMi 在溫度0℃與壓力101.3kPa下,以i成分的組分濃度表示的煙氣排放值 mg/m3
EMi,15,dry 與EMi相同,折算到干煙氣中氧的體積濃度為15%時 mg/m3
EMi,f 與EMi相同,與消耗的燃料能量相對應 g/GJ
EMi,p 與EMi相同,與燃氣輪機發出的功率相對應 g/kWh
EP 煙氣中固體顆粒的排放值 mg/m3
ES 煙氣中煙的煙度 —
EV 以體積濃度表示的煙氣排放值 cm3/m3
EVi 以i成分體積濃度表示的煙氣排放值 cm3/m3
EVi,15,dry 與EVi相同,折算到干煙氣中氧的體積濃度為15%時 cm3/m3
m 質量 kg
M 摩爾質量 kg/kmol
Mtot 總摩爾質量 kg/kmol
n 成分量 kmol
ni i成分量 kmol
ntot 成分總量 kmol
P 燃氣輪機軸功率輸出 kW
qm 質量流量 kg/s
qv 體積流量 m3/s
Vi i成分的體積 m3
Vmn 摩爾比容 m3/kmol
Vn,dry 標準狀態下的干煙氣體積a m3
表1(續)
符號 術 語 單位
Vn,15,dry 在標準狀態下,折算到干煙氣中氧的體積濃度為15%時的煙氣體積 m3
Vn,wet 標準狀態下的濕煙氣體積a m3
Vtot i成分的體積總量 m3
xi i誠分量在成分總量中的比例,等于ni/ntot 1
z 極限數 1
Z 實際氣體因子(可壓縮性) 1
ρ 密度 kg/m3
ρpa 顆粒物質的密度 kg/m3
干煙氣中的CO2以百分數表示的體積濃度 %
當使用的燃料為化學當量燃燒時,在于煙氣中以CO2的百分數表示的體積濃度 %
煙氣中的水蒸氣以百分數表示的體積濃度 %
φi,dry 干煙氣的體積濃度 cm3/m3
φi,wet 濕煙氣的體積濃度,等于Vi/Vtot cm3/m3
在干煙氣中以O2的百分數表示的體積濃度 %
注1:可使用下標g標識氣流通道上某個特定位置,例如,g7,下標7代表燃氣輪機出口處(見ISO 2314:1989)。
注2:在本標準中,以15%O2為基準值,經協商同意可使用其他的氧含量。
注3:考慮到現有的化學數據和評價方法,選擇0℃為基準溫度
a標準大氣壓pn=101.3kPa,基準溫度tn=0℃
表2化學符號及縮寫
符號 化合物
CO 一氧化碳
CO2 二氧化碳
H2O 水
N2 氮
NH3 氨
NO 一氧化氮
NO2 二氧化氮
NOx 氮氧化物
O2 氧
SO2 二氧化硫
SO3 三氧化硫
SOx 硫氧化物
UHC 未燃燒或部分燃燒后的碳氫化合物
VOC 揮發性有機化合物
5條件
5.1 燃氣輪機及燃料
燃氣輪機排放的測量條件應表明以下內容:
a)燃氣輪機制造商。
b)燃氣輪機型號。
c)在煙氣排放物測量時,燃氣輪機功率輸出、排氣質量流量與(或)燃料流量。
d)外界大氣條件,如環境壓力、溫度和空氣的濕度。
e)燃料組成。
f) 會對燃氣輪機排放產生影響的,且屬于整個測量系統裝置,如催化劑反應器、水或水蒸氣注入器、蒸發冷卻器、冷凝器等,應表明其所有流量的相關細節。
注1:燃氣輪機功率輸出、排氣質量流量與(或)燃料流量的定義,其測量和計算應由各方協商一致確定(依據ISO 2314:1989)。
注2:煙氣排放物受燃料特性影響(燃料中氮)。因此,燃料的相關細節應出示,包括相應的化學分析、溫度、物理性質和流量。
5.2測量值
應測量以下值:
a) 基于干煙氣或濕煙氣的氣態組分的體積濃度φi,wet或φi,dry。
b)煙氣中的煙度排放值—Bacharach數(ES)(依據ISO 5063:1978)。
c)濕煙氣中固體顆粒物的質量濃度(EP),需各方協商。
5.3標準工況
標準工況應為:
a)壓力101.3kPa。
b)溫度15℃。
c)相對濕度60%。
(見ISO 2314:1989,3.2.1)
注:考慮到現有的化學數據和評價方法,在進行化學計算時選擇0℃作為參考溫度。
6測量內容
6.1 煙氣排放物各組分定義
通常需要測定或計算得到的煙氣組分包括:
a) 以NO2表示的總NOx:見7.2。
b)CO和CO2:見7.3。
c) SO2:見7.4。
d)SO3:沒有推薦特定的方法。
e) 以SO2表示的總SOx:依據燃料中的硫含量計算得到。
f)H2O:測量或計算得到(考慮空氣濕度,利用燃燒計算)。
g)UHC:見7.5。
h)VOC:見.7.5。
i) NH3:見7.6。
j) O2:見7.7,或經試驗各方同意采用計算方法。
k)煙度:見7.8。
l) 固體顆粒物:見7.9;進入壓氣機的空氣中,任何對測量結果有較大影響的固體顆粒物應從所測的值中減去。
6.2測量系統布置規范
6.2.1 概述
總體上,應考慮以下三個部分:
a)取樣探頭。
b)輸送和調節系統。
c)分析儀和數據采集系統。
測量過程中應采用連續取樣,確保取樣有代表性。
在燃氣輪機安裝之前,取樣測點應事先確定:
——利用數學模型,模擬煙氣流動(與障礙物、煙氣流態—湍流或層流有關);
——或根據管道內煙氣平均流速,確定煙氣取樣代表點;
——或根據現有標準或經驗達成一致意見。
單個取樣平面通常只需要一套取樣裝置就可以滿足煙氣排放物的測量,可以帶或者不帶附加系統。
如果燃氣輪機排氣系統僅附帶消音器、排氣煙道和排向大氣的煙囪,而沒有其他設備,取樣點應布置在離燃氣輪機排氣口盡可能近且便于操作的位置。如果附帶余熱回收系統、補燃系統、稀釋系統、脫硝裝置等,取樣點位置應由各方協商確定。
取樣截面不應位于有再循環空氣進入的煙道內。
6.2.2取樣探頭
取樣探頭應能夠取到具有代表性的煙氣樣品。為此推薦使用一種等截面布置的多孔平均煙氣取樣探頭。無論采用何種取樣探頭,都應對探頭取樣樣品的代表性進行論證。
試驗用的取樣探頭和真空泵應能連續向分析儀提供足夠的煙氣流量。
如果需要論證在整個煙道橫截面取樣樣品的代表性,應該有足夠的取樣探頭覆蓋取樣截面。
取樣探頭應足夠長,以對整個煙道橫截面進行測量。取樣探頭的布置方法和步驟應事先由試驗參與各方協商確定。
6.2.3輸送及調節系統
測量煙度、固體顆粒物、氣相組分的取樣傳輸管線應是相互獨立的。
通常氣態組分的測量系統的主要組件,如圖1所示。當使用特殊的分析儀時,系統應做適當相應改動。
根據分析儀操作原理不同,需對樣品進行相應的處理。為了避免樣品組分的冷凝,整個取樣管線應被加熱至高出煙氣冷凝溫度至少10℃。
當樣品經過一個水分離裝置時,至少到該設備之前的樣品管線均應加熱。
對于硫含量低于1%(質量比)的天然氣或輕烴燃料,需至少被加熱至150℃。為此,建議對所有設備(包括泵)進行加熱,溫度通常應控制在±5℃以內。取樣管線中所有設備有以下幾點要求:
a)所有與樣品有接觸的材料應為非反應性材料(不銹鋼或等同材料)。
b)為去除出廠時管道內攜帶的殘留溶劑,推薦使用純氮連續吹掃聚四氟乙烯(PTFE)管。在此過程中,該管線應加熱到為分析特殊組分所規定的溫度。
c) 需確保所有接頭和組件無泄漏。
d)所有組件應設計為能在規定溫度的范圍內工作。
e) 當不可避免地使用較長管線時,推薦在測量系統中加入一個二級泵以提供足夠的煙氣流量。
f) 儀器與探頭之間的取樣傳輸時間應盡可能短,最好不超過30s。