GB/T 9239 consists of the following parts, under the general title Mechanical Vibration — Rotor Balancing:
— Part 1: Introduction ;
— Part 2: Vocabulary ;
— Part 11: Procedures and Tolerances for Rotors with Rigid Behaviour ;
— Part 12: Procedures and Tolerances for Rotors with Flexible Behaviour ;
— Part 13: Criteria and Safeguards for the In-situ Balancing of Medium and Large Rotors ;
— Part 14: Procedures for Assessing Balance Errors ;
— Part 21: Description and Evaluation of Balancing Machine ;
— Part 23: Enclosures and Other Protective Measures for the Measuring Station of Balancing Machines ;
— Part 31: Susceptibility and Sensitivity of Machines to Unbalance ;
— Part 32: Shaft and Fitment Key Convention .
This part is Part 21 of GB/T 9239.
This part is drafted in accordance with the rules given in the GB/T 1.1-2009.
This part replaces GB/T 4201-2006 Description Verification and Evaluation of Balancing Machines in whole.
The following main technical deviations have been made with respect to GB/T 4201-2006 (the previous edition):
— modification of the standard name;
— modification of some parameters of proving rotors type C for outboard tests on horizontal machines (see Table 5; Table 5 of Edition 2006);
— modification of the some parameters of shafts of proving rotors type C for outboard tests on horizontal machines (see Table C.1; Table C.1 of Edition 2006);
This standard is identical with International Standard ISO 21940-21:2012 Mechanical Vibration — Rotor Balancing — Part 21: Description and Evaluation of Balancing Machines.
The Chinese documents consistent and corresponding with the normative international documents in this part are as follows:
— GB/T 6444-2008 Mechanical Vibration — Balancing — Vocabulary (ISO 1925:2001, IDT).
This part was proposed by China Machinery Industry Federation.
This part is under the jurisdiction of SAC/TC 122 (National Technical Committee 122 on Testing Machines of Standardization Administration of China).
The previous editions of standards replaced by this part are as follows:
— GB/T 4201-1984, GB/T 4201-2006.
— GB/T 7662-1987.
Mechanical Vibration — Rotor Balancing — Part 21: Description and Evaluation of Balancing Machines
1 Scope
This part of GB/T 9239 specifies requirements for evaluating the performance of machines for balancing rotating components by the following tests:
a) test for minimum achievable residual unbalance, Umar test;
b) test for unbalance reduction ratio, URR test;
c) test for couple unbalance interference on single-plane machines;
d) compensator test.
These tests are performed during acceptance of a balancing machine and also later, on a periodic basis, to ensure that the balancing machine is capable of handling the actual balancing tasks. For periodic tests, simplified procedures are specified. Tests for other machine capacities and performance parameters, however, are not contained in this part.
For these tests, three types of specially prepared proving rotors are specified, covering a wide range of applications on horizontal and vertical balancing machines. An annex describes recommended modifications of proving rotors prepared in accordance with the original national standard.
Moreover, this part also stresses the importance attached to the form in which the balancing machine characteristics are specified by the manufacturer. Adoption of the format specified enables users to compare products from different manufacturers. Additionally, in an annex, guidelines are given on the information by which users provide their data and requirements to a balancing machine manufacturer.
This part is applicable to balancing machines that support and rotate rotors with rigid behaviour at balancing speed and that indicate the amounts and angular locations of a required unbalance correction in one or more planes. Therefore, it is applicable to rotors with rigid behaviour as well as to rotors with shaft-elastic behaviour balanced in accordance with low-speed balancing procedures. It covers both soft-bearing balancing machines and hard-bearing balancing machines. Technical requirements for such balancing machines are included; however, special features, such as those associated with automatic correction, are excluded.
This part does not specify balancing criteria; such criteria are specified in ISO 1940-1 and ISO 11342 (only low-speed balancing procedures apply).
2 Normative References
The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.
ISO 1925 Mechanical Vibration — Balancing — Vocabulary
3 Terms and Definitions
For the purposes of this document, the terms and definitions given in ISO 1925 apply.
4 Capacity and Performance Data of the Balancing Machine
4.1 General
The manufacturer shall specify the data listed in 4.2 for horizontal or 4.3 for vertical balancing machines, as applicable, and in a similar format.
Note: Information provided by the user to the balancing machine manufacturer is summarized in Annex A.
4.2 Data for horizontal balancing machines
4.2.1 Rotor mass and unbalance limitations
4.2.1.1 The maximum mass of a rotor, m, which can be balanced shall be stated over the range of balancing speeds (n1 , n2 , ...).
The maximum moment of inertia of a rotor with respect to the shaft axis, mr2, where m is the rotor mass and r is the radius of gyration, which the machine can accelerate in a stated acceleration time shall be given for the range of balancing speeds (n1 , n2 , ...) together with the corresponding cycle rate (see Table 1).
?
Table 1 Data for horizontal balancing machines
Manufacturer: ………………………………………… Model: ………….………………………………………..
Balancing speeds or speed ranges (see 4.2.3.1) n1 n2 n3 n4 …
Rotor mass kg
(see Note 1) Maximum
Minimum
Occasional overload force per support N
(see Note 1)
Maximum negative force per support N
(see Note 1)
Maximum rotor moment of inertia with respect to the shaft axis kg·m2
(see Note 2)
Cycle rate (see Note 2)
Maximum unbalance g·mm/kg or g·mm
(see Note 3) Measurable value
Permissible value
a) For inboard rotors
Minimum achievable residual specific unbalance, emar g·mm/kg
(see Note 4 and Clause 6) Maximum mass
0.2 × maximum mass
Minimum mass
Corresponding deflection of analogue amount-of-unbalance indicator, mm; or
Number of digital units
(see Note 4) Gross vehicle mass
0.2 × maximum mass
Minimum mass
b) For outboard rotors
Minimum achievable residual specific unbalance, emar g·mm/kg
(see Note 4 and Clause 6) Gross vehicle mass
0.2 × maximum mass
Minimum mass
Corresponding deflection of analogue amount-of-unbalance indicator, mm; or
Number of digital units
(see Note 4) Gross vehicle mass
0.2 × maximum mass
Minimum mass
Note 1: The occasional overload force is only stated for the lowest balancing speed. It is the maximum force per support that can be accommodated by the machine without immediate damage.
The negative force is the static upward force resulting from a rotor having its centre of mass outside the bearing support.
Note 2: Cycle rate for a given balancing speed is the number of starts and stops which the machine can perform per hour without damage to the machine when balancing a rotor of the maximum moment of inertia.
Note 3: In general, for rotors with rigid behaviour with two correction planes, one-half of the stated value pertains to each plane; for disc-shaped rotors, the full stated value holds for one plane.
Note 4: Limits for soft-bearing machines are generally stated in gram millimetres per kilogram (specific unbalance, g·mm/kg), since this value represents a measure of rotor displacement and, therefore, motion of the balancing machine bearings. For hard-bearing machines, the limits are generally stated in gram millimetres (g·mm), since these machines are usually factory calibrated to indicated unbalance in such units (see Clause 6). For two-plane machines, this is the result obtained when the minimum achievable residual unbalance is distributed between the two planes.
4.2.1.2 Production efficiency (see Clause 7) shall be stated, as follows.
4.2.1.2.1 Time per measuring run:
a) Time for mechanical adjustment: s
b) Time for setting indicating system: s
c) Time for preparation of rotor: s
d) Average acceleration time: s
e) Reading time (including time to stabilize): s
f) Average deceleration time: s
g) Relating readings to rotor: s
h) Other necessary time: s
i) Total time per measuring run [a) to h) in the preceding]: s
4.2.1.2.2 Unbalance reduction ratio, URR, for inboard rotors: %
4.2.1.2.3 Unbalance reduction ratio for outboard rotors: %
4.2.2 Rotor dimensions
4.2.2.1 Adequate envelope drawings of the pedestals and of other obstructions, such as belt-drive mechanism, shroud mounting pads, thrust arms and tie bars, shall be supplied to enable the user to determine the maximum rotor envelope that can be accommodated and the tooling or adaptors required.
A combination of large journal diameter and high balancing speed can result in an excessive journal peripheral speed. The maximum journal peripheral speed shall be stated.
When belt drive is supplied, balancing speeds shall be stated for both the maximum and minimum diameters over which the belt can drive, or other convenient diameter.
The manufacturer shall state if the axial position of the drive can be adjusted.
4.2.2.2 Rotor envelope limitations shall be stated (see Figure 1).
4.2.2.3 Rotor diameter:
a) Maximum diameter over bed: mm
b) Maximum diameter over which belt can drive: mm
c) Minimum diameter over which belt can drive: mm
4.2.2.4 Distance between journal centrelines:
a) Maximum: mm
b) Minimum: mm
c) Maximum distance from coupling flange to centreline of farthest bearing: mm
d) Minimum distance from coupling flange to centreline of nearest bearing: mm
Key:
1 — shaft;
2 — rotor;
3 — support;
4 — bed.
If the left-hand support is not a mirror image of the right-hand support, separate dimensions shall be shown.
The profile of the belt-drive equipment shall be shown, if applicable.
Figure 1 Example of a machine support drawing illustrating rotor envelope limitations
4.2.2.5 Journal diameter:
a) Maximum: mm
b) Minimum: mm
Maximum permissible peripheral journal speed m/s
4.2.2.6 Correction plane limitations (consistent with the statements in 5.4) shall be stated.
4.2.2.7 Correction plane interference ratios (consistent with the statements in 5.4 and based on the proving rotor) shall be stated.
4.2.3 Drive
4.2.3.1
Balancing speed Rated torque on rotor
r/min N·m
n1
n2
n3
n4
n5
n6
n7
n8
or steplessly variable or steplessly variable
From
To From
To
4.2.3.2 Torque:
a) Zero-speed torque: ................................. % of rated torque on rotor
b) Run-up torque adjustable from ......... % to .......... % of rated torque on rotor
c) Peak torque .......................................................... % of rated torque on rotor
Note: In most cases, maximum torque is required for accelerating a rotor. However, in the case of a rotor with high windage or friction loss, maximum torque can be required at balancing speed. When there is axial thrust, it is necessary that provisions be made to take this into account.
4.2.3.3 Type of drive to rotor: ………………………………………….
Examples: End drive by universal joint driver, end drive by band, belt drive, magnetic field, driven bearing rollers, air jet.
4.2.3.4 Prime mover (type of motor): ………………………………………….
a) Rated power: ………………………………………….kW
b) Motor speed: ………………………………………….r/min
c) Power supply, voltage/frequency/phase: ……………/………………/………………
4.2.3.5 Brake:
a) Type of brake: ………………………………………….
b) Braking torque adjustable from ........... % to .......... % of rated torque
c) Can the brake be used as a holding device? Yes / No
4.2.3.6 Motor and controls in accordance with the following standard(s): ………………
4.2.3.7 Speed regulation provided:
Accurate or constant within .................. % of ................. r/min, or .................. r/min
4.2.4 Couple unbalance interference ratio: ………………………………g·mm/(g·mm2)
Note: This value is only applicable for single-plane balancing machines. It describes the influence of couple unbalance in the rotor on the indication of resultant unbalance.
4.2.5 Air pressure requirements: ................. Pa, ............m3/s
4.3 Data for vertical balancing machines
4.3.1 Rotor mass and unbalance limitations
4.3.1.1 The maximum mass of a rotor, m, which can be balanced shall be stated over the range of balancing speeds (n1, n2, ...). The maximum moment of inertia of a rotor with respect to the shaft axis, mr2 , where m is the rotor mass and r is the radius of gyration, which the machine can accelerate in a stated acceleration time shall be given for the range of balancing speeds (n1, n2, ...) together with the corresponding cycle rate (see Table 2).
Table 2 Data for vertical balancing machines
Manufacturer: Model:
Balancing speeds or speed ranges (see 4.3.3.1) n1 n2 n3 n4 …
Rotor mass kg
(see Note 1) Maximum
Minimum
Occasional overload force up to N
(see Note 1)
Maximum rotor moment of inertia with respect to the shaft axis kg·m2
(see Note 2)
Cycle rate (see Note 2)
Maximum unbalance g·mm/kg or g·mm
(see Note 3) Measurable value
Permissible value
Minimum achievable residual specific unbalance, emar g·mm/kg
(see Note 4 and Clause 6) Maximum mass
0.2 × maximum mass
Minimum mass
Corresponding deflection of analogue amount-of-unbalance indicator, mm; or
Number of digital units
(see Note 4) Gross vehicle mass
0.2 × maximum mass
Minimum mass
Note 1: The occasional overload force is only stated for the lowest balancing speed. It is the maximum force per support that can be accommodated by the machine without immediate damage.
Note 2: Cycle rate for a given balancing speed is the number of starts and stops which the machine can perform per hour without damage to the machine when balancing a rotor of the maximum moment of inertia.
Note 3: In general, for rotors with rigid behaviour with two correction planes, one-half of the state value pertains to each plane; for disc-shaped rotors, the full stated value holds for one plane.
Note 4: Limits for soft-bearing machines are generally stated in gram millimetres per kilogram (specific unbalance, g·mm/kg), since this value represents a measure of rotor displacement and, therefore, motion of the balancing machine bearings. For hard-bearing machines, the limits are generally stated in gram millimetres (g·mm), since these machines are usually factory calibrated to indicated unbalance in such units (see Clause 6). For two-plane machines, this is the result obtained when the minimum achievable residual unbalance is distributed between the two planes.
4.3.1.2 Production efficiency (see Clause 7) shall be stated, as follows.
4.3.1.2.1 Time per measuring run:
a) Time for mechanical adjustment: s
b) Time for setting indicating system: s
c) Time for preparation of rotor: s
d) Average acceleration time: s
e) Reading time (including time to stabilize): s
f) Average deceleration time: s
g) Relating readings to rotor: s
h) Other necessary time: s
i) Total time per measuring run [a) to h) in the preceding]: s
4.3.1.2.2 Unbalance reduction ratio, URR: %
4.3.2 Rotor dimensions
4.3.2.1 If the machine is equipped with two or more speeds, the information on rotor dimensions shall be stated for each speed. If the machine is equipped with steplessly variable balancing speeds, then the information shall be given in the form of a table, formula or graph.
Adequate drawings of the support surface of the spindle or mounting plate and of obstructions, such as drill heads and electrical control cabinets, above the mounting plate shall be supplied to enable the user to determine the maximum rotor envelope that can be accommodated and the tooling or adaptors required.
4.3.2.2 Maximum diameter: mm
a) Maximum overall height: mm
b) Maximum height of centre of gravity: mm
at 100 % of maximum mass: mm
at 50% of maximum mass: mm
at 25% of maximum mass: mm
4.3.2.4 Rotor envelope limitations, including machine spindle or mounting plate interface, shall be stated (see Figure 2).
4.3.2.5 Correction plane limitations (consistent with the statements in 5.4) shall be stated.
?
4.3.3 Drive
4.3.3.1
Balancing speed Rated torque on rotor
r/min N·m
n1
n2
n3
n4
n5
n6
n7
n8
Key:
1 — rotor;
2 — adaptor;
3 — protractor;
4 — spindle;
5 — upper correction plane;
6 — centre of mass plane;
7 — lower correction plane;
8 — mounting holes for adaptor;
9 — spigot diameter.
Figure 2 Example of vertical machine mounting interface illustrating rotor envelope limitations
4.3.3.2 Torque:
a) Zero-speed torque: ....................................% of rated torque on rotor
b) Run-up torque adjustable from ........... % to ............ % of rated torque on rotor
c) Peak torque .......................................................... % of rated torque on rotor
Note: In most cases, maximum torque is required for accelerating a rotor. However, in the case of a rotor with high windage or friction loss, maximum torque can be required at balancing speed.
4.3.3.3 Prime mover (type of motor): ........................................................................
a) Rated power: ........................................................................kW
b) Motor speed: ........................................................................r/min
c) Power supply, voltage/frequency/phase: ................./................./.................
4.3.3.4 Brake:
a) Type of brake: ....................................................................
b) Braking torque adjustable from .......... % to .......... % of rated torque
c) Can the brake be used as a holding device? Yes / No
4.3.3.5 Motor and controls in accordance with the following standard(s):.................
4.3.3.6 Speed regulation provided:
Accurate or constant within .................. % of ................. r/min, or .................. r/min
4.3.4 Couple unbalance interference ratio: ..................................g·mm/(g·mm2)
Note: This value is only applicable for single-plane balancing machines. It describes the influence of couple unbalance in the rotor on the indication of resultant unbalance.
4.3.5 Air pressure requirements: ................. Pa, ............m3/s
?
5 Machine Features
5.1 Principle of operation
An adequate description of the principle of operation of the balancing machine shall be given, e.g. motion measuring, force measuring, resonance, compensation.
5.2 Arrangement of the machine
5.2.1 The manufacturer shall describe the general configuration of the balancing machine and the principal features of design, e.g.:
— horizontal or vertical axis of rotation;
— soft- or hard-bearing suspension system;
— resonance-type machine with mechanical compensator.
5.2.2 The manufacturer shall provide details of the following, as applicable.
5.2.2.1 Components designed to support the rotor, e.g.:
— V blocks;
— open rollers;
— plain half bearings;
— closed ball, roller or plain bearings;
— devices to accommodate rotors in their service bearings;
— devices to accommodate complete units.
Details of bearing lubrication requirements shall be given, where applicable.
5.2.2.2 The mechanical adjustment and functioning of the means provided to take up axial thrust from the rotor (horizontal machines only).
5.2.2.3 Type(s) of transducers used to sense unbalance effects.
5.2.2.4 The drive and its control.
5.3 Indicating system
5.3.1 General
A balancing machine shall have means to determine the amount of unbalance and its angular location; such means shall be described, e.g.:
— wattmetric indicating system;
— voltmetric indicating system with phase-sensitive rectifier (including systems with frequency conversion);
— voltmetric system with stroboscope and filter;
— voltmetric indicating system with marking of angular position on the rotor itself;
— compensator with mechanical or electrical indication.
5.3.2 Amount indicators
The manufacturer shall describe the means of amount indication provided, e.g.:
— wattmetric or voltmetric component meters;
— wattmetric or voltmetric amount meters;
— wattmetric or voltmetric vector meters;
— mechanical or optical indicators;
— analogue or digital readout.
5.3.3 Angle indicators
The manufacturer shall describe the means of angle indication provided, e.g.:
— wattmetric or voltmetric component meters;
— wattmetric or voltmetric vector meters;
— direct angle indication in degrees on a scale meter;
— oscilloscope, stroboscopic indicators;
— mechanical or optical indicators;
— analogue or digital readout.
5.3.4 Operation of the indicating system
The manufacturer shall describe the procedure by which readings are obtained, taking into account at least the following aspects.
a) How many measuring runs are required to obtain:
— the two readings for single-plane balancing;
— the four readings for two-plane balancing.
b) Is an indicator provided for each reading or is it necessary to switch over for each reading.
c) Are readings retained after the end of the measuring run.
d) Is an individual plus-and-minus switch provided for each plane which permits the indication of a heavy or light spot.
5.4 Plane separation system
5.4.1 This subclause is not applicable to single-plane balancing machines, for which see 5.4.2.
The manufacturer shall state whether plane separation is provided. If it is provided, at least the following details shall be given.
a) How is it operated for single rotors of a type not previously balanced.
b) How is it operated for single rotors in a series, with identical dimensions and mass.
c) The limits of rotor geometry over which plane separation is effective shall be defined with the effectiveness stated on the basis of the correction plane interference ratio, stating the following.
— the ratio of bearing distance to plane distance for which plane separation is effective;
— whether either or both correction planes can be between or outside the bearings;
— whether the centre of mass can be between or outside the two selected correction planes or bearings.
d) Whether the indicator system can also be used to measure directly resultant unbalance and couple unbalance.
5.4.2 For single-plane horizontal or vertical machines, the manufacturer shall state to what extent the machine is able to suppress effects of couple unbalance (see 11.8).
5.5 Setting and calibration of indication
5.5.1 General
The manufacturer shall describe the means of setting and calibration and the means provided for checking these.
The manufacturer shall state whether setting is possible for indication in any desired unit, whether practical correction units or unbalance units.
The manufacturer shall state:
— the number of runs required for calibrating the balancing machine for single-plane balancing;
— the number of runs required for calibrating the balancing machine for two-plane balancing.
The manufacturer shall state the maximum permissible change, in percentage terms, in repeatability of speed during calibration and operation.
5.5.2 Soft-bearing machines
The manufacturer shall state how calibration is accomplished on the first rotor of a particular mass and configuration (e.g. whether the rotor has to be balanced by a trial-and-error procedure or whether a compensator is provided, whether calibration masses are required), and whether total or partial recalibration is required when changing the balancing speed.
If a compensator is provided, the limits of initial unbalance, of rotor geometry and speed for which compensation is effective shall be stated.
5.5.3 Hard-bearing machines
The manufacturer shall state whether the balancing machine is permanently calibrated and can be set according to the rotor or whether it requires calibration by the user for different balancing speeds, rotor masses and dimensions.
5.6 Other devices
Special devices which influence the efficient functioning of the balancing machine shall be described in detail, e.g.:
— indication in components of an arbitrary coordinate system;
— indication of unbalance resolved into components located in limited sectors in more than two correction planes;
— correction devices;
— devices to correlate the measured angle or amount of unbalance with the rotor;
— suitable output for connection to a computer, printer or other peripherals.
6 Minimum Achievable Residual Unbalance
The minimum residual unbalance that can be achieved with a balancing machine shall be specified in terms of specific unbalance, in gram millimetres per kilogram (g·mm/kg), together with the corresponding amount-of-unbalance indication.
This minimum achievable residual specific unbalance, emar, shall be stated for the full range of rotor masses and balancing speeds of the machine.
In achieving the stated residual unbalance, the manufacturer shall consider whether the accuracy of the following is adequate for this purpose:
— amount indication;
— angle indication;
— plane separation;
— scale multiplier;
— drive, bearings, etc.
It should be noted that the stated minimum achievable residual unbalance value applies to the balancing machine as delivered, but if out-of-round journals, excessively heavy or loose adaptors, or other tooling are employed by the user, the minimum achievable residual unbalance can be affected.
7 Production Efficiency
7.1 General
Production efficiency is the ability of the machine to assist the operator in balancing a rotor to a given residual unbalance in the shortest possible time. It shall be assessed by using a proving rotor or, alternatively, a test rotor to be specified by the user.
To find the production rate for a specific rotor (number of pieces per time or the reciprocal of the floor-to-floor time), the time per measuring run, the necessary number of runs, the time for loading, unbalance correction and unloading have to be taken into consideration. The necessary number of measuring runs depends on the average initial unbalance, the balance tolerance and the unbalance reduction ratio (URR).
Foreword III
1 Scope
2 Normative References
3 Terms and Definitions
4 Capacity and Performance Data of the Balancing Machine
4.1 General
4.2 Data for horizontal balancing machines
4.3 Data for vertical balancing machines
5 Machine Features
5.1 Principle of operation
5.2 Arrangement of the machine
5.3 Indicating system
5.4 Plane separation system
5.5 Setting and calibration of indication
5.6 Other devices
6 Minimum Achievable Residual Unbalance
7 Production Efficiency
7.1 General
7.2 Time per measuring run
7.3 Unbalance reduction ratio
8 Performance Qualifying Factors
9 Installation Requirements
9.1 General
9.2 Electrical and pneumatic requirements
9.3 Foundation
10 Proving Rotors and Test Masses
10.1 General
10.2 Proving rotors
10.3 Test masses
11 Verification Tests
11.1 Requirements for performance and parameter verification
11.2 Duties of manufacturer and user
11.3 Requirement for weighing scale
11.4 Test and rechecks
11.5 Test speed
11.6 Test for minimum achievable residual unbalance, Umar
11.7 Test for unbalance reduction ratio, URR
11.8 Test for couple unbalance interference on single-plane machines
11.9 Compensator test
11.10 Simplified tests
Annex A (Informative) Information Provided by the User to the Balancing Machine Manufacturer
Annex B (Informative) URR Limit Diagrams
Annex C (Informative) Shafts of Outboard Proving Rotors Type C
Annex D (Informative) Modifications of Proving Rotors Prepared in accordance with the Original National Standard to This Part
Bibliography
機械振動 轉子平衡
第21部分:平衡機的描述與評定
1 范圍
GB/T 9239的本部分規定了通過下列試驗對平衡旋轉零部件用的平衡機性能的評定要求:
a) 最小可達剩余不平衡量試驗,Umar試驗;
b) 不平衡量減少率試驗,URR試驗;
c) 單面平衡機偶不平衡干擾試驗;
d) 補償器試驗。
這些試驗是在驗收平衡機過程中和以后定期檢查中進行的,以確保平衡機能夠運用于實際的平衡作業。對于定期試驗規定了簡化試驗程序。本部分未規定對平衡機其他能力和性能參數的試驗。
這些試驗中規定了三種型式的專用校驗轉子,適用于絕大多數立式和臥式平衡機的應用范圍。附件中描述了按照原國家標準規定的老式校驗轉子的推薦改制方法。
此外,本部分還強調了制造商制定平衡機特性格式的重要性。采用此指定格式,使用戶能夠對不同制造商的產品進行比較。另外在附錄中,給出了由用戶向制造商提供數據和要求的信息指南。
本部分適用于支承轉子并使轉子旋轉在平衡轉速下處于剛性狀態的平衡機,并能在一個或多個平面上能指示出需要不平衡校正的量值和所在相角。因此,它適用于剛性轉子以及帶有彈性軸的轉子按照低速平衡程序平衡。它涵蓋了軟支承平衡機和硬支承平衡機。本部分還包括對上述平衡機的技術要求,但不包括諸如與自動校正有關的那些特殊性能。
本部分未規定平衡準則,該準則在ISO 1940-1和ISO 11342(只有低速平衡程序適用)中予以規定。
2 規范性引用文件
下列文件對于本文件的應用是必不可少的。凡是注日期的引用文件,僅注日期的版本適用于本文
件。凡是不注日期的引用文件,其最新版本(包括所有的修改單)適用于本文件。
ISO 1925 機械振動 平衡 詞匯(Mechanical vibration—Balancing—Vocabulary)
3 術語和定義
ISO 1925界定的術語和定義適用于本文件。
4 平衡機的容量和性能數據
4.1 一般要求
制造者應按4.2或4.3的規定,分別給出適合于臥式平衡機或立式平衡機的數據。
注:用戶向平衡機制造商提供的信息匯總參見附錄A。
4.2 臥式平衡機數據
4.2.1 轉子質量和不平衡量限值
4.2.1.1 能夠平衡的轉子最大質量m,應在平衡機的平衡轉速(n1、n2、……)范圍內規定。
應給出對應平衡轉速(n1、n2、……)范圍在規定加速時間內平衡機能夠完成加速的轉子相對于軸線的最大轉動慣量mr2,m 為轉子質量,r 為回轉半徑,并同時給出相應的周期率(見表1)。
表1 臥式平衡機數據
制造者: 型號:
平衡轉速或轉速范圍(見4.2.3.1) n1 n2 n3 n4 …
轉子質量 kg
(見注1) 最大
最小
每個支承架偶然過載力 N
(見注1)
每個支承架的最大支承反力 N
(見注1)
轉子于軸線的最大轉動慣量 kg·m2
(見注2)
周期率(見注2)
最大不平衡度(或量) g·mm/kg或g·mm
(見注3) 測量值
允許值
a) 內質心轉子
最小可達剩余不平衡度,emar g·mm/kg
(見注4和第6章) 最大質量
0.2×最大質量
最小質量
模擬式不平衡量指示器的相應偏轉量,mm
或
數字式指示裝置顯示的字數
(見注4) 最大質量
0.2×最大質量
最小質量
b) 外質心轉子
最小可達剩余不平衡度,emar g·mm/kg
(見注4和第6章) 最大質量
0.2×最大質量
最小質量
模擬式不平衡量指示器的相應偏轉量,mm
或
數字式指示裝置顯示的字數
(見注4) 最大質量
0.2×最大質量
最小質量
注1:偶然過載力僅需對應最低平衡轉速標出。該力是在不直接損壞平衡機的情況下每個支承架能夠承受的最大作用力。
支承反力是由質心位于軸承支架以外的轉子所產生的方向向上的靜態力。
注2:對于某一給定平衡轉速的周期率是指在不損壞平衡機的情況下平衡最大轉動慣量的轉子時,平衡機每小時能進行啟動和停機的次數。
注3:對于具有兩個校正平面的剛性轉子,通常是將該給定值的一半分配給每個平面;對于盤類轉子,則該給定值的全部屬于一個平面。
注4:軟支承平衡機的限值通常以克毫米每千克(不平衡度,g·mm/kg)表示,該值代表轉子位移,亦即平衡機支承移動的量度。對于硬支承平衡機,該限值通常以克毫米(g·mm)表示,因為此類平衡機通常就以這樣的單位對指示的不平衡量進行出廠校準的(見第6章)。對于雙面平衡機,該值是最小可達剩余不平衡量分配到兩個平面上所得到的結果。
4.2.1.2 關于生產效率(見第7章)應標明的內容如下。
4.2.1.2.1 每次測量運行時間:
a) 機械調整時間: s
b) 指示系統設定時間: s
c) 轉子的準備時間: s
d) 平均加速時間: s
e) 讀數時間(包括數值穩定時間): s
f) 平均減速時間: s
g) 將測量讀數對應到轉子上的時間: s
h) 其他必要的時間: s
i) 每次測量操作[上述a)~h)]總時間: s
4.2.1.2.2 內質心轉子不平衡量減少率URR: %
4.2.1.2.3 外質心轉子不平衡量減少率: %
4.2.2 轉子尺寸
4.2.2.1 應提供擺架和諸如圈帶驅動裝置、護罩安裝底座、止推臂、連接桿等其他妨礙物件的足夠詳細的外形尺寸圖,以供使用者確定能夠容納的最大轉子空間及所需要的工裝或接頭。
大的軸頸直徑的和高平衡轉速的組合可以導致過高的軸頸圓周線速度,故應標明最高的軸頸圓周線速度。
當采用圈帶驅動時,對圈帶能夠驅動的最大和最小直徑或其他合適的直徑應標明平衡轉速。
如果驅動裝置的軸向位置能夠調節,制造者應予以說明。
4.2.2.2 應標明轉子外形的極限尺寸(見圖1)。
4.2.2.3 轉子直徑:
a) 機座上可放置的最大直徑: mm
b) 可用圈帶驅動的最大直徑: mm
c) 可用圈帶驅動的最小直徑: mm
4.2.2.4 軸頸中心線間的距離:
a) 最大距離: mm
b) 最小距離: mm
c) 從連接法蘭到最遠端支承中心線的最大距離: mm
d) 從連接法蘭到最近端支承中心線的最小距離: mm
說明:
1——轉子軸;
2——轉子;
3——支承架;
4——機座。
如果左側支承架與右側支承架不是鏡像對稱的,應分別標示出其尺寸。
如果采用圈帶驅動,應標示出圈帶驅動裝置的輪廓圖。
圖1 標明轉子極限尺寸的平衡機支承架外形圖示例
4.2.2.5 軸頸直徑:
a) 最大直徑: mm
b) 最小直徑: mm
最大允許軸頸外圓線速度: m/s
4.2.2.6 對校正平面的限定(按5.4的規定)應予以說明。
4.2.2.7 應標明校正平面干擾比(按5.4的規定和基于的校驗轉子)。
4.2.3 驅動
4.2.3.1
平衡轉速 施加到轉子上的額定扭矩
r/min N·m
n1
n2
n3
n4
n5
n6
n7
n8
或無級變速 或無級變化
從
到 從
到
4.2.3.2 施加到轉子上的扭矩:
a) 零轉速扭矩:額定扭矩的 %
b) 啟動扭矩可調:從額定扭矩的 %,到 %
c) 峰值扭矩:額定扭矩的 %
注:在絕大多數情況下,加速轉子需要最大扭矩。但是在轉子有高風阻或摩擦阻力大的情況時,平衡轉速需要最大的扭矩。當存在軸向推力時,要考慮相關措施。
4.2.3.3 驅動轉子的類型:
示例:萬向節軸端驅動,軸端帶動驅動,圈帶驅動,磁場驅動,驅動滾輪,吹氣驅動。
4.2.3.4 主動力源(電動機的類型):
a) 額定功率: kW
b) 電動機轉速: r/min
c) 電源:電壓/頻率/相數: / /
4.2.3.5 制動:
a) 制動類型:
b) 制動扭矩可調:從額定扭矩的 %到 %
c) 制動裝置能否用作夾持裝置? 能/否
4.2.3.6 電動機和控制系統符合下述標準:
4.2.3.7 轉速調整水平:
準確到或穩定在 r/min的 %,或 r/min以內
4.2.4 偶不平衡干擾比: g·mm/(g·mm2)
注:這個數值僅適用于單面平衡機。它描述了轉子的偶不平衡對不平衡結果指示的影響。
4.2.5 壓縮空氣要求: Pa, m3/s
4.3 立式平衡機數據
4.3.1 轉子質量和不平衡量限值
4.3.1.1 能夠平衡的轉子最大質量m ,應在平衡機的平衡轉速(n1、n2、……)范圍內規定。應給出對應平衡轉速(n1、n2、……)范圍在規定加速時間內平衡機能夠完成加速的轉子相對于軸線的最大轉動慣量mr2,m 為轉子質量,r 為回轉半徑,并同時給出相應的周期率(見表2)。
表2 立式平衡機數據
制造者: 型號:
平衡轉速或轉速范圍(也見4.2.3.1) n1 n2 n3 n4 …
轉子質量 kg
(見注1) 最大
最小
偶然過載力可達 N
(見注1)
轉子對軸線的最大轉動慣量 kg·m2
(見注2)
表2 (續)
制造者: 型號:
周期率(見注2)
最大不平衡度(或量) g·mm/kg或g·mm
(見注3) 測量值
允許值
最小可達剩余不平衡度, emar g·mm/kg
(見注4和第6章) 最大質量
0.2×最大質量
最小質量
模擬式不平衡量指示器的相應偏轉量,mm
或
數字式指示裝置顯示的字數
(見注4) 最大質量
0.2×最大質量
最小質量
注1:偶然過載力僅需對應最低平衡轉速標出。該力是在不直接損壞平衡機的情況下每個支承架能夠承受的最大作用力。
注2:對于某一給定平衡轉速的周期率是指在不損壞平衡機的情況下平衡最大轉動慣量的轉子時,平衡機每小時能進行啟動和停機的次數。
注3:對于具有兩個校正平面的剛性轉子,通常是將該給定值的一半分配給每個平面;對于盤類轉子,則該給定值的全部屬于一個平面。
注4:軟支承平衡機的限值通常以克毫米每千克(不平衡度,g·mm/kg)表示,該值代表轉子位移,亦即平衡機支承移動的量度。對于硬支承平衡機,該限值通常以克毫米(g·mm)表示,因為此類平衡機通常就以這樣的單位對指示的不平衡量進行出廠校準的(見第6章)。對于雙面平衡機,該值是最小可達剩余不平衡量分配到兩個平面上所得到的結果。
4.3.1.2 關于生產效率(見第7章)應標明下列內容。
4.3.1.2.1 每次測量運行的時間:
a) 機械調整時間: s
b) 指示系統設定時間: s
c) 轉子的準備時間: s
d) 平均加速時間: s
e) 讀數時間(包括數值穩定時間): s
f) 平均減速時間: s
g) 將測量讀數對應到轉子上的時間: s
h) 其他必要的時間: s
i) 每次測量操作[上述a)~h)]總時間: s
4.3.1.2.2 不平衡量減少率URR: %
4.3.2 轉子尺寸
4.3.2.1 如果平衡機具有兩種或多種轉速,對應每種轉速應給出此參數。如果平衡機的平衡轉速可無級變速,則此參數應以表格、公式或圖表的格式給出。
應提供主軸承載面或安裝平面和諸如鉆削動力頭、電控箱等障礙物件在其安裝平面的以上部分的足夠詳細的外形尺寸圖,以供使用者確定能夠容納的最大轉子的空間及所需要的工裝和(或)接頭。
4.3.2.2 最大直徑: mm
a) 最大總高度: mm
b) 最大重心高度: mm
100%最大質量時的高度: mm
50%最大質量時的高度: mm
25%最大質量時的高度: mm
4.3.2.4 應標明轉子外形的極限尺寸,包括平衡機軸端或安裝平面的接口尺寸(見圖2)。
4.3.2.5 對校正平面的限定(按5.4的規定)應予以說明。
4.3.3 驅動
4.3.3.1
平衡轉速 施加到轉子上的額定扭矩
r/min N·m
n1
n2
n3
n4
n5
n6
n7
n8
說明:
1——轉子;
2——連接器;
3——角度盤;
4——主軸;
5——上校正平面;
6——質心平面;
7——下校正平面;
8——連接器安裝孔;
9——柱塞直徑。
圖2 標明轉子外形極限尺寸和與立式平衡機安裝連接關系的示例
4.3.3.2 施加到轉子上的扭矩:
a) 零轉速扭矩:額定扭矩的 %
b) 啟動扭矩可調:從額定扭矩的 %到 %
c) 峰值扭矩:額定扭矩的 %
注:在絕大多數情況下,加速轉子需要最大扭矩。但是在轉子有高風阻或摩擦阻力大的情況時,平衡轉速需要最大的扭矩。
4.3.3.3 主動力源(電動機類型): a) 額定功率: kW
b) 電動機轉速: r/min
c) 電源:電壓/頻率/相數: / /
4.3.3.4 制動:
a) 制動類型:
b) 制動扭矩可調:從額定扭矩的 %到 %
c) 制動裝置能否用作夾持裝置? 能/否
4.3.3.5 電動機和控制系統符合下述標準:
4.3.3.6 轉速調整水平:
準確到或穩定在 r/min的 %,或 r/min以內。
4.3.4 偶不平衡干擾比: g·mm/(g·mm2)
注:這個數值僅適用于單面平衡機。它描述了轉子的偶不平衡對不平衡指示的影響。
4.3.5 壓縮空氣要求: Pa, m3/s
5 平衡機性能
5.1 工作原理
應給出位移測量、力測量、諧振、補償等平衡機工作原理的詳細說明。
5.2 平衡機的結構
5.2.1 制造商應說明平衡機的一般結構型式和主要設計特點,例如:
——水平或垂直的旋轉軸;
——軟支承系統或硬支承系統;
——帶機械補償器的諧振式平衡機。
5.2.2 為方便使用,制造商應盡可能提供下列詳情。
5.2.2.1 為支承轉子而設計的部件,如:
——V 型塊;
——開式滾輪;
——半開滑動軸承;
——閉式滾珠、滾柱或滑動軸承;
——轉子的調心軸承;
——調整總成的裝置。
用到軸承時,應給出軸承潤滑要求的細節。
5.2.2.2 承受轉子軸向推力裝置的機械調整和功能(僅對臥式平衡機而言)。
5.2.2.3 用于檢測不平衡效應的傳感器的類型。
5.2.2.4 驅動及其控制。
5.3 指示系統
5.3.1 一般要求
平衡機應具有測定不平衡量值及其相角位置的裝置,對該裝置應予以描述,示例如下:
——光點矢量瓦特計指示系統;
——帶有相敏檢波器的電壓表指示系統(包括頻率轉換系統);
——帶有頻閃儀和濾波器的電壓表指示系統;
——轉子本身帶有相角位置標志的電壓表指示系統;
——帶有機械和電氣指示的補償器。
5.3.2 量值指示器
制造商應對平衡機上的量值指示裝置予以說明,示例如下:
——瓦特計或電壓表分量指示器;
——瓦特計或電壓表量值指示器;
——瓦特計或電壓表矢量指示器;
——機械式或光學式指示器;
——模擬式或數字式指示器。
5.3.3 相角指示器
制造商應對平衡機上的相角指示裝置予以說明,示例如下:
——瓦特計和電壓表分量指示器;
——瓦特計和電壓表矢量指示器;
——在以度為單位標度的儀表上直接指示相角;
——示波器、頻閃指示器;
——機械式或光學式指示器;
——模擬式或數字式指示器。
5.3.4 指示系統的操作
制造商應描述獲取讀數的步驟,至少應考慮以下幾點:
a) 需要多少次測量運行可獲取:
——單面平衡過程中的兩個讀數;
——雙面平衡過程中的四個讀數。
b) 是否一個指示器能顯示每個讀數,或對于每個讀數是否需要切換。
c) 測量運行結束后能否保留讀數。
d) 是否為每個平面提供一個獨立的可指示輕位或重位的加—減切換開關。
5.4 平面分離系統
5.4.1 本條不適用于單面平衡機,見5.4.2。
制造商應說明平衡機是否具有平面分離功能,如果有此功能,至少應給出下列細節:
a) 對于以前未曾平衡的某類型的單個轉子如何操作。
b) 對成批的具有相同尺寸和質量的單種轉子如何操作。
c) 能有效進行平面分離的轉子幾何尺寸的限值應根據校正平面干擾比表明的有效性而確定,并做下列說明:
——能有效進行平面分離的支承間距與平面間距之比;
——一個或兩個校正平面能否位于支承之內或之外;
——質心能否位于兩個選定的校正平面或支承之內或之外。
d) 指示系統能否也可用于直接測量靜不平衡和偶不平衡。
5.4.2 對單面臥式或立式平衡機,制造商應說明平衡機能抑制偶不平衡影響的能力(見11.8)。