1 Scope
This document provides specifications for vibration and balance limits for ventilation fans for all applications, except for ventilation fans specifically designed for air circulation, such as ceiling and table fans, but limited to all types of ventilation fans with an installed capacity of less than 300 kW or motors with a maximum power of 355 kW commercially available (following the R20 series), for ventilation fans with a power exceeding this value, the applicable limits are given in ISO 10816-3; where the power of the ventilator to be installed varies between 300 kW and more and is an item under a single contract, the manufacturer and the purchaser shall agree on the applicable standard, usually by majority opinion of the participating parties.
Vibration data may be required for different applications, as detailed in chapter 5. If the customer is willing to accept lower quality balanced vibration levels see Appendix H.
This document recognises that vibration measurements can be recorded as velocity, acceleration or displacement in absolute units or in decibels based on a reference value; the value of the vibration measurement will be influenced by the actual installation on the balancing machine (see Appendix B), however the preferred parameter is velocity in millimetres per second (mm/s), given in root mean square (r.m.s) and bee-peaks or peaks, given the different customs around the world; It should also be remembered that the ventilator and its components can be considered as a spring-mass system and an understanding of this can help in solving most vibration problems (see Appendix D).
At the same time, it has been taken into account that ventilators are often not connected to the ductwork when tested in the factory, which results in significantly different pneumatic conditions compared to normal operation; also, temporary foundation supports may be used, which have different mass product stiffnesses than those used in the field, and accordingly, such tests provide for vibration measurements in a "narrow band"; field tests The "wide band" is specified, which represents a measure of the overall vibration intensity.
This document covers ventilator equipment with rigid rotors, commonly used in: commercial heating, ventilation and air conditioning, industrial processes, mining/tunnel ventilation and power generation; other areas are not specifically excluded; c applications where severe stresses, shocks or temperature extremes are not included, the use of any part or all of this document or its amendments is subject to agreement between the parties.
The foundation and actual installation of the ventilator equipment is outside the scope of this document, as the foundation design and installation of the ventilator is not normally undertaken by the ventilator manufacturer, and it is fully assumed that the foundation used to install the ventilator will provide the required support and stability to meet the vibration evaluation guidelines for ventilators arriving from the factory.
Other factors, such as impeller cleanliness, aerodynamic condition, background vibration, operating speeds different from those intended, and ventilator maintenance, may affect ventilator vibration levels but are outside the scope of this document.
This document is intended to cover only the balance and vibration of ventilators and does not consider the effects of vibration on personnel, equipment or processes.
2 Normative references
The contents of the following documents constitute essential provisions of this document by means of normative references in the text. Among them, note the date of the reference documents, only the date of the corresponding version applies to this document; do not note the date of the reference documents, the latest version (including all the revision of the list) applies to this document.
GB/T9239.1-2006 Mechanical Vibration - Balance Quality Requirements for Stationary (Rigid) Rotors - Part 1: Specification and Inspection of Balance Tolerance (ISO 1940-1; 2003, 1DT)
ISO 254 Belt drives - Pulleys - Quality finish and bal ance
ISO 4863 Flexible shaft couplings - Information to be supplied by users and manufacturers
ISO 5348 Mechanical vibration and shock - Mechanical
GB/T 41973-2022/ISO 14694:2003 mounting of accelerometers)
Note: GB/T 14412-2005 Mechanical Installation of Mechanical Vibration and Impact Accelerometers (ISO 5348:1998, IDT)
ISO 5801 Fans - Performance testing using standardized airways
Note: GB/T 1236-2017 Performance Test of Industrial Fans and Standardized Ducts (ISO 5801: 2007, IDT)
ISO 10816-3 Mechanical vibration Measurement and evaluation of machine vibration on non rotating parts Part 3: Industrial machines with rated power greater than 15 kW and rated speed between 120 r/min and 15 000 r/min measured in the field (Mechanical vibration - Evalua-tion of machine vibration by measurements on non-rotating parts - Part 3: Industrial machines withnominal power above 15 kW and nominal speeds between 120 r/min and 15 000 r/min when measuredin situ)
Note: GB/T 6075.3-2011 Mechanical Vibration Measurement and Evaluation of Machine Vibration on Non rotating Parts, Part 3: Industrial Machines with Rated Power greater than 15 kW and Rated Speed between 120 r/min and 15000 r/min Measured on Site (ISO 10816-3.2009.IDT)
ISO 13348 Industrial fans - Tolerances, methods of conversion and technical data presentation
ISO 14695:2003 Industrial fans - Method of measurement off vibration
ISO 21940-11 Mechanical vibration - Rotor balancing - Part 11: Procedures and tolerances for rotors with rigid behavior
Note: GB/T 9239.1-2006 Mechanical Vibration - Balance Quality of Constant (Rigid) Rotors - Part 1: Specification and Inspection of Balance Tolerance (ISO 1940-1, 2003, IDT)
3 Terminology and definitions
The following terms and definitions apply to this document.
4 Symbols and units
The following symbols apply to this document.
5 Purpose of the test
Before any vibration test is carried out, it is desirable that the information required regarding the purpose of the test is clearly defined and agreed upon by all parties involved.
6 Classification of applications for balance and vibration (category BV)
The design/construction of the ventilator and the circumstances in which it is designed are important criteria for classifying many types of ventilators with respect to their application and meaningful balance quality classes and vibration levels.
The classification is given in Table 1 in a compilation of the application categories of ventilation fans according to the acceptable balance and vibration limits and the purpose for which they may be placed in use.
7 Balancing
7.1 Overview
The manufacturer of the ventilator is responsible for balancing the ventilator-impeller assembly to acceptable commercial standards; this document is based on ISO 21940-11 and is balanced on a special balancing machine with high sensitivity, the accuracy of the balancing machine should be assessed in accordance with the requirements for residual unbalance allowed.
7.2 Balancing quality classes
The following balancing quality classes apply to ventilator impellers. Ventilator manufacturers may add other rotating parts (shafts, couplings, grooved pulleys/pulleys, etc.) to a rotating assembly to be balanced together. Alternatively, balancing of individual components can be requested. The balancing requirements for couplings and pulleys are described in ISO 4863 and ISO 254.
8 Ventilator vibration
8.1 Measurement requirements
8.1.1 Overview
Figures 1 to 4 illustrate some of the possible locations and orientations for taking vibration readings on each ventilator bearing, other locations may be relevant for vibration measurements on the foundation or ventilator flange (see ISO 14695), the values shown in Table 4 are based on readings taken perpendicular to the axis of rotation; the number and location of test readings for factory or field operation are to be determined by the ventilator manufacturer or in consultation with the It is recommended that measurements be taken on the bearings of the impeller shaft or, if this is not feasible, that the signal collector be mounted on the shortest direct mechanical path between the sensor and the bearings; when a continuous mechanical path is not available, the sensor should not be mounted on an unsupported panel, ventilator casing, guard, flange or other part of the ventilator unless it is necessary to give information on the transmission of vibration to the duct and/or foundation (see ISO 14695). (see ISO 14695 and ISO 5348).
Horizontal data should be read in a radial direction at right angles to the ventilator shaft, vertical data should be read at right angles to the ventilator shaft and perpendicular to the horizontal reading, and axial data should be read in a direction parallel to the axis of the rotor shaft (rotor's).
9 Other rotating parts
Accessory rotating parts that can affect the vibration level of a ventilator include drive wheels, belts, couplings and motors/drives. When a ventilator is ordered from the manufacturer as a bare unit (i.e. the manufacturer does not supply the drive and/or motor or, if supplied, does not take responsibility for installation), it is not always practical for the manufacturer to carry out a final test run of the vibration level of the complete unit, and therefore, although the manufacturer has carried out impeller balancing, until the drive and/or drive is connected to the ventilator shaft and the unit is tested for vibration level in the start-up condition, the user It is not possible to determine whether the complete ventilator unit is running smoothly.
Balancing adjustments are often required to reduce vibration levels to start-up levels; it is recommended that all new BV-3, BV-4 and BV-5 ventilator units undergo a final complete test run prior to operational commissioning to establish a baseline for future predictive maintenance work.
The manufacturer of the ventilator cannot be held responsible for vibration effects caused by the addition of drive components after the factory test run; for more information on the balance quality class of components or vibration, see the relevant references listed in chapter Peal.
10 Instrumentation and calibration
10.1 Instrumentation
The instrumentation and balancing machine used should meet the requirements of the task and be within the current calibration period, see ISO 1940-1:1986, Chapter 8; the calibration interval of the instrumentation should be determined in accordance with the recommendations of the instrumentation manufacturer and the instrumentation should be in good condition and suitable to perform the required functions for the entire test period.
The person operating the instrument shall be familiar with the instrument and have sufficient experience to detect possible instrument malfunction or degradation in time; when the instrument requires corrective action or calibration, he shall be withdrawn from work until the corrective action has been completed.
10.2 Calibration
All instruments shall be calibrated to known standards, the complexity of which varies from physical inspection to complete calibration; the use of traceable weights that have been calibrated to determine residual unbalance, as described in ISO 1940-1;1986, 8.3, is an accepted method of calibrating instruments.
11 Records
11.1 Balancing
Appendix A (informative) Relationships between vibrational displacement, velocity and acceleration for sinusoidal motion
Appendix B (informative) Assembly guidelines for balancing on a balancing machine
Appendix C (informative) Sources of vibration
Appendix D (informative) Equations of vibration
Appendix E (Informative) Vibration and Support
Appendix F (informative) Unbalance and bearing response
Appendix G (informative) Condition monitoring and diagnostic guidelines
Appendix H (informative) Relief recommendations for specified classes and levels
Bibliography
1 Scope
2 Normative references
3 Terminology and definitions
4 Symbols and units
5 Purpose of the test
6 Classification of applications for balance and vibration (category BV)
7 Balancing
8 Ventilator vibration
9 Other rotating parts
10 Instrumentation and calibration
11 Records
Appendix A (informative) Relationships between vibrational displacement, velocity and acceleration for sinusoidal motion
Appendix B (informative) Assembly guidelines for balancing on a balancing machine
Appendix C (informative) Sources of vibration
Appendix D (informative) Equations of vibration
Appendix E (Informative) Vibration and Support
Appendix F (informative) Unbalance and bearing response
Appendix G (informative) Condition monitoring and diagnostic guidelines
Appendix H (informative) Relief recommendations for specified classes and levels
Bibliography
1范圍
本文件對所有用途的通風機提供了振動與平衡限值的規范,專門設計用于空氣循環的通風機除外,如吊扇和臺扇等,但限于裝機容量小于300 kW所有種類的通風機或市場可以購買的最大功率為355 kW的電機(遵循R20系列),對于功率超過這個數值的通風機,適用的限值見ISO 10816-3;當安裝使用的通風機其功率在300 kW上下變化,且為單一合同下的物項時,制造商和采購方應就適用的標準協商一致,通常以參與單位多數意見為原則。
振動數據可為不同用途所需,詳見第5章。如果客戶愿意接受較低品質的平衡振動水平時見附錄H。
本文件認可振動測量值可以記錄為速度、加速度或位移,單位為絕對單位或基于參考值的分貝;振動測量的數值會受到在平衡機上實際安裝情況的影響(見附錄B),然而首選的參數為速度,單位為毫米每秒(mm/s),鑒于世界各地習慣不同,給出均方根(r.m.s)和蜂-峰或峰值;還宜記住的是,通風機及其部件可視作彈簧-質量系統,對此的理解有助于解決大部分的振動問題(見附錄 D)。
同時,已經考慮到工廠進行試驗時通風機常常不與管道系統連接,這樣與正常運行相比,氣動工況存在顯著差異;另外也可采用臨時基礎支承,其質量積剛度與現場使用情況也不同,相應地,這類的測試規定以“窄帶”測量振動;現場測試規定采用寬帶”進行,其代表了總體振動烈度的度量。
本文件包含帶有剛性轉子的通風機設備,西常見于:商用供熱,通風和空調,工業過程,礦業/隧道通風以及發電領域,其他領域未予以特別排除;c不包含嚴重受力,沖擊或極端溫度的應用場合,對于本文件或其修正的任意部分或全部的采用,由莎及的各方協商確定。
通風機設備的基礎及實際安裝不在本文件范圍之內,基礎設計和通風機安裝一般不是由通風機制造商承擔,完全可以認為用于安裝通風機的基礎能夠提供需要的支承及穩定性,滿足由工廠運抵的通風機振動評價準則。
其他因素﹐諸如葉輪清潔度﹑氣動狀態、背景振動、與原定不同的運行轉速,以及通風機維護等,會影響通風機振動水平,但不在本文件范圍之內。
本文件旨在僅涵蓋通風機的平衡與振動,不考慮振動對人員,設備或過程的影響。
2規范性引用文件
下列文件中的內容通過文中的規范性引用而構成本文件必不可少的條款。其中,注日期的引用文件,僅該日期對應的版本適用于本文件;不注日期的引用文件,其最新版本(包括所有的修改單)適用于本文件。
GB/T9239.1-2006機械振動恒態(剛性)轉子平衡品質要求第1部分:規范與平衡允差的檢驗(ISO 1940-1;2003,1DT)
ISO 254皮帶傳動皮帶輪質量成品與平衡(Belt drives - Pulleys - Quality finish and bal-ance)
ISO 4863彈性聯軸器﹐由用戶和制造商提供的資料(Resilient shaft couplings - Information tobe supplied by users and manufacturers)
ISO 5348機械振動與沖擊加速度計的機械安裝(Mechanical vibration and shock - Mechanical
GB/T 41973-2022/ISO 14694:2003 mounting of accelerometers)
注:GB/T 14412-2005機械振動與沖擊加速度計的機械安裝(ISO 5348:1998,IDT)
ISO 5801工業通風機用標準化風道性能試驗(Fans - Performance testing using standardizedairways)
注:GB/T 1236-2017工業通風機﹑用標準化鳳道性能試驗(ISO 5801: 2007,IDT)
ISO 10816-3機械振動在非旋轉部件上測量評價機器的振動第3部分:額定功率大于15 kW額定轉速在120 r/min至15 000 r/min之間的在現場測量的工業機器(Mechanical vibration - Evalua-tion of machine vibration by measurements on non-rotating parts - Part 3: Industrial machines withnominal power above 15 kW and nominal speeds between 120 r/min and 15 000 r/min when measuredin situ)
注:GB/T 6075.3-2011機械振動在非旋轉部件上測量評價機器的振動﹐第3部分:額定功率大于15 kW額定轉速在120 r/min至15000 r/min之間的在現場測量的工業機器(ISO 10816-3.2009.IDT)
ISO 13348工業通風機公差及技術參數表示與轉換方法(Industrial fans - Tolerances, methodsof conversion and technical data presentation)
ISO 14695:2003工業通風機通風機振動測量方法(Industrial fans - Method of measurement offan vibration)
ISO 21940-11機械振動轉子平衡第11部分:剛性轉子的程序和公差(Mechanical vibration - Rotor balancing - Part 11: Procedures and tolerances for rotors with rigid behaviour)
注:GB/T 9239.1-2006機械振動恒態(剛性)轉子平衡品質闋淖第1部分:規范與平衡允差的檢獨(ISO 1940-1, 2003,IDT)
3術語和定義
下列術語和定義適用于本文件。
4符號和單位
下列符號適用于本文件。
5試驗目的
在進行任何振動試驗之前,相關各方宜清晰界定有關試驗目的所需信息并達成一致。
6平衡與振動的應用分類(BV類別)
通風機的設計/結構及其設計所用場合﹐是很多類型通風機關于其應用與有意義的平衡品質等級和振動水平分類的重要準則。
表1按照通風機關于可接受的平衡與振動限值與可能安放使用的目的劃分應用類別,匯編給出了分類,
7平衡
7.1概述
通風機制造商負責對通風機-葉輪組件進行平衡,使其達到可接受的商業標準要求;本文件根據ISO 21940-11制定,在高靈敏度的專用平衡機上進行平衡,平衡機的精度評定應符合殘余不平衡量允許的要求。
7.2平衡品質等級
以下平衡品質等級適用于通風機葉輪,通風機制造商可將其他轉動部件(軸,聯軸器,槽輪/皮帶輪等)加入組合成旋轉組件一同進行平衡。另外,可要求進行單獨部件的平衡。聯軸器和皮帶輪的平衡要求見ISO 4863和ISO 254.
8通風機振動
8.1測量要求
8.1.1概述
圖1~圖4說明了在每個通風機軸承上測量振動讀數時的一些可能的位置和方向,其他位置可能與在基礎或通風機法蘭上的振動測量相關(見ISO 14695),表4所示的數值所依據的是與旋轉軸垂直方向測得的讀數﹔在工廠或現場運行的試驗讀數的數量和位置由通風機制造商決定,或與采購方協商確定﹐建議在葉輪軸的軸承上進行測量﹐如不可行,則應將信號采集器安裝在傳感器與軸承之間的最短直接機械路徑上﹔當不能得到連續的機械路徑時,不應將傳感器安裝在無支撐的面板、通風機機殼、防護罩,法蘭或通風機的其他地方,除非需要給出振動傳遞至管道和/或基礎的信息(見ISO 14695和ISO 5348)。
水平數據應在與通風機軸成直角的徑向方向上讀取,垂直數據應在相對于通風機軸成直角,且與水平讀數相垂直的方向讀取,軸向數據應在與轉軸(轉子的)軸線相平行的方向讀取。
9其他旋轉部件
可影響通風機振動水平的附屬旋轉部件包括驅動輪,皮帶、聯軸器以及電機/驅動裝置。當從制造商處訂購的通風機為裸機狀態時(即制造商不提供驅動和/或電機,或即使提供也不負責安裝),由制造商進行最終整機的振動水平試驗運行并不總是切實可行,因此,盡管制造商已經進行過葉輪平衡,但是在驅動和/驅動器與通風機軸連接,機組進行啟動狀態振動水平測試之前,用戶無法確定通風機整機是否平穩運行。
通風機整機常常要求進行平衡調整,以將振動水平降低至啟用狀態水平;建議對所有新建的BV-3、BV-4和BV-5的通風機裝置,在工作調試之前﹐先進行最終整機試驗運行,以此確立未來的預測性維修工作的基準。
工廠試驗運行之后增加的驅動部件所造成的振動效應,通風機制造商對此不能承擔責任;關于部件的平衡品質等級或振動的更多信息,見第⒉章列出的相關引用文件。
10儀表及校準
10.1儀表
所用儀表及平衡機應滿足任務要求并處在當前的校準有效期內﹐見ISO 1940-1:1986第8章;儀表的校準周期宜按照儀表制造商的建議確定,儀表應完好并適合于完成整個試驗期間所要求的功能。
操作儀表的人員應熟悉儀表,并擁有足夠的經驗及時察覺可能的儀表故障或性能退化;當儀表需要采取糾正措施或校準時,應退出工作,直至完成糾正措施的執行。
10.2校準
所有儀表應根據已知標準進行校準,校準工作從實物檢驗到完整的校準,其復雜性各不相同;采用可追溯的已經通過校準的砝碼確定殘余不平衡量,如ISO 1940-1;1986中8.3所述,是一種被接受的校準儀器的方法。
11記錄
11.1平衡
附錄A(資料性)正弦運動的振動位移﹑速度及加速度之間的關系
附錄B(資料性)在平衡機上進行平衡的裝配指南
附錄C(資料性)振動源
附錄D(資料性)振動方程
附錄E(資料性)振動與支承
附錄F(資料性)不平衡與軸承的反應
附錄G(資料性)狀態監測與診斷指南
附錄H(資料性)規定的等級與水平的寬限建議
參考文獻