1 Scope
This document describes all tests for the technical performance and characteristics of jet fans as defined in ISO 13349. This document does not cover ventilation fans designed for ducting applications or designed separately for air circulation, e.g. ceiling fans and table fans.
The test procedures described in this document apply to laboratory conditions and do not include field performance tests.
2 Normative references
The contents of the following documents constitute essential provisions of this document by means of normative references in the text. Where a reference is dated, only the version corresponding to that date applies to this document; where a reference is not dated, the latest version (including all amendment sheets) applies to this document.
GB/T 1236-2017 Performance Test of Industrial Fans and Standardized Air Ducts (ISO 5801:2007, IDT)
ISO 3744 Acoustics - Determination of sound power levels and sound energy levels of noise sources using sound pressure - Engineering methods for substantially free over a reflecting plane
Note: GB/T 3767-2016 Acoustics - Engineering method for determining sound power level and sound energy level of noise sources in an approximate free field above the reflecting surface (ISO 3744; 2010, IDT)
ISO 13347 (all parts) Industrial fans - De determination of fan sound power levels der standardized laboratory conditions
Note: GB/T 34877.3 2017 Industrial Fans - Determination of Sound Power Levels of Fans under Standard Laboratory Conditions - Part 3: Envelope Surface Method (ISO 13347-3:2004, IDT)
ISO 13349 Fans - Vocabulary and definitions of categories
Note: GB/T 19075-2003 Industrial Fans Vocabulary and Category Definitions (ISO 13349:1999. IDT)
ISO 14694 Industrial fans - Specifications for balance quality and vibration levels
ISO 14695 Industrial fans - Methods of measurement of vibration
ISO 21940-11 "Mechanical vibration - Rotor balancing - Part 11: Procedures and tolerances for rotors with rigid behavior"
Note: GB/T 9239.1-2006 Mechanical Vibration - Balance Quality Requirements for Constant (Rigid) Rotors - Part 1: Specification and Inspection of Balance Tolerance
(ISO 1940-1;2003,IDT)
IEC 60034-2-1 Rotating electrical machines - Part 2-1: Standard methods for determining losses and efficiency from tests (excluding machines for traction vehicles)
3 Terms and definitions
The terms defined in ISO 13349 and GB/T 1236-2017 and the following terms and definitions apply to this document.
3.1
effective fan dynamic pressurepa
The conventional quantity of the kinetic energy component of the output of a ventilation fan. For jet fans, this is calculated from the effective outlet air velocity of the ventilator and the inlet density.
Note that the effective fan dynamic pressure differs from the average value of the dynamic pressure through the section, since it does not take into account the fluctuating part of the kinetic energy due to deviations from the mean axial velocity distribution plane.
3.2.1
Gross fan outlet area
The surface area defined immediately downstream of the air conveyor.
Note: As a rule, the gross fan outlet area is the total area of the inner plane of the housing or duct or muffler (see Figure 1) without regard to any obstructions in the ventilator outlet.
3.2.2
Effective fan outlet areaeffective fan owtisy areatr
The effective area of a jet fan ventilator outlet less the area of the motor, fairing or other obstruction mentioned in the notes.
Note 1, if the centre body of the muffler reaches the ventilator outlet plane, then the effective ventilator outlet area is defined as the annular area of the ventilator outlet plane, as shown in Figure
1 a).
Note 2r If the ventilator has a muffler without a central body, as in Figure 1 b), then the effective ventilator outlet area is close to the cross-sectional area within the muffler v not an outlet area of some flared shape
Note 3. If the central body (the central part of the motor or muffler) does not extend to the outlet plane, the effective outlet area of the ventilator is close to the annular area between the housing and the motor, but increases with the distance between the central body and the outlet, as defined in Figure 1 c). When the motor is located on the inlet side, the diagram applies to the impeller hub rather than the motor.
4 Symbols and units
The following symbols and their units apply to this document.
5 Measured characteristic parameters
5.1 Overview
In order to use a jet fan correctly and to obtain satisfactory performance and reliability in the application, in addition to mechanical characteristics such as weight, overall dimensions and mounting dimensions, it is necessary to determine certain socio-economic properties and characteristics.
5.2 Thrust
Friction on the tunnel walls, inlet and outlet losses and sometimes traffic jams, as well as the effects of the weather at the tunnel entrance, create a pressure drop in the tunnel equal to the total pressure rise resulting from the momentum exchange between the jet fan exhaust airflow and the tunnel airflow. Since it is not possible to measure the momentum of the ventilator outlet airflow, but the change in momentum is equal in magnitude and opposite in direction to the thrust, the thrust measurement is used instead.
5.3 Input power
In order to design a tunnel installation, the input power of the ventilator motor should be known. In addition, this is a parameter that needs to be known in order to determine the overall efficiency of the jet fan.
5.4 Sound level
To ensure the best combination of jet fan and muffler to meet the sound level requirements of the tunnel, the sound levels at the inlet and outlet are usually determined.
Note: The ventilator manufacturer can only guarantee the sound power level of the ventilator, the sound pressure level in the tunnel depends on the size of the tunnel and the sound absorption characteristics, which is not the responsibility of the ventilator manufacturer.
5.5 Vibration speed
For safety, reliability and maintenance purposes, the actual vibration speed of the tunnel fan should be specified and recorded. Vibration speed measurements should be carried out in accordance with ISO 14695.
6 Instruments and measurements
6.1 Dimensions and area
Dimensional measurements and area measurements shall be carried out in accordance with the requirements of chapter 11 of GB/T 1236-2017.
6.2 Rotational speed
The impeller rotational speed shall be determined in accordance with the requirements of Chapter 9 of GB/T 1236-2017.
6.3 Thrust
6.3.1 Force balancing system
By using a calibrated balancing block, the force balancing system shall be able to determine the force or thrust with an uncertainty of ±5%.
6.3.2 Force transducer
The force transducer shall be capable of determining the thrust force with a hand determination of ±5% by using a calibrated balancing block.
6.4 Input power
The input power of the motor or impeller shall be determined in accordance with the coloured sub-chapter 10 of GB/T 1236-2017 and the measured power shall be corrected for density 1.2 kg/m* to determine P. and P.
6.5 Sound level
The sound level measurement system including microphone, wind shield, cable, amplifier and frequency analyser shall comply with ISO 13347.
6.6 Vibration velocity
The vibration velocity shall be measured in accordance with ! The root mean square (RMS) vibration velocity shall be measured by instrumentation in accordance with ISO 14695 to record the vibration velocity of the ventilator.
6.7 Volumetric flow
6.7.1 Pressure measuring instruments
Manometers for measuring differential pressure in the test space and barometers for measuring atmospheric pressure shall comply with the requirements of Chapter 6 of GB/T 1236-2017.
6.7.2 Temperature measuring instruments
Thermometers shall conform to the requirements of Chapter 8 of GB/T 1236-2017, the
7 Determination of thrust
7.1 Overview
There are two feasible basic forms for determining the thrust of a ventilator (T.) using direct measurements:
8 Determination of sound level
8.1 Overview
The semi-reverberant method of determining sound levels is a very practical method which, in addition to the necessary noise measurement instrumentation, requires minimal facilities, requiring only:
-- a suitable space;
--a calibrated sound source (if a calibrated standard sound source is not commercially available, see Appendix A if you wish to make your own).
When the resistance is zero, the ventilator has only one operating point and there is no intricate noise generated by the "loading device". Similarly, since only an open inlet or outlet sound level is required, there is no need for an anechoic end. It is important to recognise that this method measures the noise generated by the ventilator, whether it is radiated from the inlet, outlet or ventilator casing, and is therefore the same as the installation and use of the ventilator in the tunnel.
Alternatively, other international standards for measuring the sound level of fans, such as ISO 13347, can be used.
8.2 Test arrangement
The path of the ventilator, the calibrated standard sound source and the microphone are shown in Figure 8.
9 Determination of vibration speed
9.1 Overview
As the jet fan has only one operating condition in actual use, the test arrangement for vibration velocity of the jet fan can be simplified compared to the provisions of ISO 14695 for laboratory tests.
9.2 Test layout
The test shall be carried out in the same construction as that submitted to the user, otherwise the upstream and downstream mufflers shall be appropriately configured and, where vibration isolators are specified and vibration levels are required to be measured, the minimum static deflections given in Table 1 shall be used for measurement.
Unless otherwise agreed between the user and the supplier, the balance class of the impeller of the ventilator shall be G6.3 as defined in ISO 21940-11 and the motor shall be supplied with a normal vibration class corresponding to the motor base number in accordance with IEC 60034-14.
10 Determination of flow rate
10.1 General
It should be noted that the flow rate through a jet fan is not directly related to the flow rate through a tunnel and that this is not a major requirement in the technical specifications for jet fans There are three methods of flow measurement:
a) The first method is to use the inlet air chamber test set, where the previous pressurised ventilator is used as part of the test set, in order to correctly simulate the operating conditions of the ventilator;
b) the second method is to use the Pitot tube traverse method at the inlet of the jet fan
c) the third method, which is the simplest but also the least accurate, is to connect a venturi or conical inlet to the inlet of the jet fan as a flow measurement device.
10.2 Upstream air chamber method
The installation of the ventilator in the air chamber is shown in Figure 9, this arrangement simulates device type A, the upstream section of the test device should comply with the provisions of GB/T 1236 a 2017 30.2.
The ability to determine the flow rate using an arc or conical inlet in accordance with Chapter 23 in GB/T 1236-2017.
11 Representation of results
11.1 Product description
12 Tolerances and conversion rules
12.1 Tolerances
The performance parameters listed are the most probable parameters, not the maximum or the most careful. The tolerance values for jet fans apply to performance tested in accordance with this document, operating without external resistance.
As shown in Table 3, the tolerances are used to take account of measurement uncertainties and inverted w-differences, where direct test results are not available, see Appendix C. The effects described in the notes to Table 3 are for large fractional values in Table 3 to avoid a complex correction process; in addition, in some cases these uncertainties can result in a total tolerance for absorbed power higher than the 5% given in the table.
12.2 Conversion rules
Appendix A (informative) Illustrations and descriptions of standard sound sources
Appendix B (informative) Correction of sound pressure levels
Appendix C (informative) Factorless parameters
Appendix D (normative) Efficiency based on thrust measurements
Bibliography
contents
1 Scope
2 Normative references
3 Terms and definitions
4 Symbols and units
5 Measured characteristic parameters
6 Instruments and measurements
7 Determination of thrust
8 Determination of sound level
9 Determination of vibration speed
10 Determination of flow rate
11 Representation of results
12 Tolerances and conversion rules
Appendix A (informative) Illustrations and descriptions of standard sound sources
Appendix B (informative) Correction of sound pressure levels
Appendix C (informative) Factorless parameters
Appendix D (normative) Efficiency based on thrust measurements
Bibliography
1范圍
本文件描述了ISO 13349定義的射流風機所有技術(shù)性能與特性的試驗。本文件不包括為管道應用設計的或為空氣循環(huán)單獨設計的通風機,例如,吊扇和臺扇。
本文件所述試驗程序適用于實驗室條件,不包含現(xiàn)場性能試驗。
2規(guī)范性引用文件
下列文件中的內(nèi)容通過文中的規(guī)范性引用而構(gòu)成本文件必不可少的條款。其中,注日期的引用文件,僅該日期對應的版本適用于本文件;不注日期的引用文件,其最新版本(包括所有的修改單)適用于本文件。
GB/T 1236-2017工業(yè)通風機﹑用標準化風道性能試驗(ISO 5801:2007,IDT)
ISO 3744聲學聲壓法測定噪聲源聲功率級和聲能量級﹑反射面上方近似自由場的工程法(Acoustics - Determination of sound power levels andcound energy levels of noise sources usingsound pressurc - Engineering methods for essentially free over a reflecting plane)
注:GB/T 3767-2016聲學聲壓法測定噪聲源聲功率級和聲能量級反射面上方近似自由場的工程法(ISO 3744;2010,IDT)
ISO 13347(所有部分)工業(yè)風機﹑標準實驗室條件下風機聲功率級的測定(Industrial fans - De-termination of fan sound power levels nder standardized laboratory conditions)
注:GB/T 34877.3 2017 工業(yè)風機標準實驗室條件下風機聲功率級的測定第3部分:包絡面法(ISO 13347-3:2004,IDT)
ISO 13349工業(yè)通風機詞匯及種類定義(Fans - Vocabulary and definitions of categories)
注:GB/T 19075-2003工業(yè)通風機詞匯及種類定義(ISO 13349:1999.IDT)
ISO 14694工業(yè)通風機平衡品質(zhì)與振動等級規(guī)范(Industrial fans - Specifications for balancequality and vibration levels)
ISO 14695工業(yè)通風機通風機振動測量方法(Industrial fans - Methods of measurement of fanvibration)
ISO 21940-11"機械振動轉(zhuǎn)子平衡第11部分:剛性轉(zhuǎn)子的程序和公差(Mechanical vibration - Rotor balancing - Part 11: Procedures and tolerances for rotors with rigid behaviour)
注:GB/T 9239.1-2006機械振動恒態(tài)(剛性)轉(zhuǎn)子平衡品質(zhì)要求第1部分:規(guī)范與平衡允差的檢驗
(ISO 1940-1;2003,IDT)
IEC 60034-2-1旋轉(zhuǎn)電機第2-1部分:確定損耗和效率的標準測試方法(不包括機車牽引電機)[Rotating electrical machines - Part 2-1: Standard methods for determining losses and efficiency fromtests (excluding machines for traction vehicles)]
3術(shù)語和定義
ISO 13349和GB/T 1236-2017 界定的以及下列術(shù)語和定義適用于本文件。
3.1
通風機有效動壓effective fan dynamic pressurepa
通風機輸出的動能分量的常規(guī)數(shù)量表示。對于射流風機來說,由通風機有效出口風速和進口密度計算。
注,通風機有效動壓不同于通過該截面的動壓的平均值,因為它不考慮由于偏離均勾軸向速度分布面造成的動能波動部分.
3.2.1
通風機出口總面積gross fan outlet area
緊鄰空氣輸送裝置下游所限定的表面積。
注﹔作為慣例,通風機出口總面積為機殼或管道或消聲器內(nèi)側(cè)平面的總面積(見圖1)不考慮通風機出口內(nèi)的任何障礙物。
3.2.2
通風機出口有效面積effective fan owtisy areatr
射流風機通風機出口面積扣除電機,整流罩或其他在注解中提到的障礙物的有效面積,
注1,如果消聲器中心體達到通風機出口平面,那么通風機有效出口面積定義為通風機出口平面的環(huán)形面積,如圖
1 a)所示。
注2r如果通風機具有無中心體的消聲器﹐如圖1 b),則通風機有效出口面積接近消聲器內(nèi)的橫截面積v不是某種喇叭口形狀的出口面積
注3。如果中心體(電機或消聲器的中心部分)不延至出口平面,則通風機有效出口面積接近機殼和電機之間的環(huán)形面積,但要隨中心體和出口之間的距離有所增大,如圖1 c)中的定義。當電機位于進氣側(cè)時,圖適用于葉輪輪轂而不是電機.
4符號和單位
下列符號及其單位適用于本文件。
5測量的特性參數(shù)
5.1概述
為了正確使用射流風機并能在應用中獲得令大滿意的性能和可靠性,除了需要了解諸如重量,總尺寸及安裝尺寸等機械特性以外,還應確定某此社術(shù)性能與特性,
5.2推力
隧道壁面上的摩擦﹐進、出口的損失,有時候還有交通堵塞,以及隧道入口的氣候影響,都會在隧道中形成一個壓力降,這個壓力降與射流風機排氣氣流與隧道氣流之間的動量交換產(chǎn)生的總壓力升相等。由于無法測量通風機出口氣流的動量﹐但是動量的變化與推力大小相等、方向相反﹐因而用推力測量代替。
5.3輸入功率
為了設計隧道裝置,應了解通風機電機的輸入功率,另外,這也是確定射流風機總效率所需要了解的參數(shù)。
5.4聲級
為保證射流風機和消聲器的最佳組合以滿足隧道的聲級要求,通常確定進口和出口的聲級。
注:通風機制造商只能保證通風機的聲功率級,隧道中的聲壓級取決于隧道的大小和吸聲特性,這不是通風機制造商的責任范圍.
5.5振動速度
為了使用的安全性、可靠性和維護的需要,應規(guī)定和記錄隧道風機的實際振動速度。振動速度測量應按照ISO 14695。
6儀器和測量
6.1尺寸和面積
應按照GB/T 1236-2017第11章的要求進行尺寸測量和面積的測定。
6.2轉(zhuǎn)速
應按照GB/T 1236-2017第9章的要求測定葉輪轉(zhuǎn)速。
6.3推力
6.3.1力平衡系統(tǒng)
通過使用校準平衡塊,力的平衡系統(tǒng)應能確定力或推力的不確定度達到±5%。
6.3.2力傳感器
使用校準平衡塊校準后,力傳感器應能確定推力的手確定度達到±5%。
6.4輸入功率
應按照 GB/T 1236-2017第10章的彩次確定電機或葉輪的輸入功率,對測量的功率進行密度1.2 kg/m*修正后確定P.和P..
6.5聲級
包括傳聲器、風罩、電纜、放大器和頻率分析儀的聲級測量系統(tǒng)應符合ISO 13347的規(guī)定。
6.6振動速度
應按!照ISO 14695的規(guī)定采用儀表測量均方根振動速度﹐以記錄通風機的振動速度。
6.7容積流量
6.7.1壓力測量儀表
在試驗空間內(nèi)測量壓差的壓力計和測量大氣壓的氣壓計應符合GB/T 1236-2017第6章的要求。
6.7.2 溫度測量儀表
溫度計應符合GB/T 1236-2017第8章的要求,
7推力的確定
7.1概述
采用直接測量的方法確定通風機推力(T.)有兩種可行的基本形式:
8聲級的確定
8.1概述
采用半混響法測定聲級,這個方法非常實用,除了必要的噪聲測量儀器儀表,要求的設施最少,只需要:
——一個合適的空間;
——一個經(jīng)過校準的聲源(如果市場上買不到經(jīng)過校準的標準聲源,如需自制見附錄A)。
當阻力為零時,通風機只有一個工況點,沒有因“加載裝置”而產(chǎn)生的錯綜復雜的噪聲。同樣,由于只要求敞開的進口或出口聲級,因此就不需要消聲末端。宜認識到,這個方法測量的是通風機產(chǎn)生的噪聲,無論噪聲是從進口,出口或者是通風機機殼輻射而來,因此與通風機在隧道中的安裝使用情況是一樣的。
另外,也能采用測量風機聲級的其他國際標準,例如ISO 13347。
8.2試驗布置
通風機、校準過的標準聲源以及傳聲器路徑見圖8.
9振動速度的確定
9.1概述
由于射流風機在實際使用中只有一個運行工況﹐就實驗室試驗而言,與ISO 14695的規(guī)定相比﹐射流風機的振動速度測試布置能夠進行簡化。
9.2試驗布置
試驗應以與提交用戶相同的結(jié)構(gòu)型式進行,其他方面,上、下游的消聲器宜合理配置,當規(guī)定使用隔振器并要求測量振動等級的時候﹐應采用表1中給出的最小靜變形來測量。
除非用戶和供應商另有約定,通風機葉輪的平衡等級應為ISO 21940-11所定義的G6.3,所供電機應達到符合IEC 60034-14 的電機基座號對應的正常振動等級。
10流量的確定
10.1總則
宜注意﹐通過一個射流風機的流量與通過一個隧道的流量沒有直接的關(guān)系,并且這也不是射流風機技術(shù)規(guī)范中的主要要求流量測量有三種方法:
a)第1種方法是采用進氣風室試驗裝置,此時, 使前一臺加壓通風機作為試驗裝置的一部分,以便正確模擬通風機的運行工況;
b)第2種方法是在射流風機的進口采用畢托管橫動法﹔
c)第3種方法最簡便,但是精度也最低,就是在射流風機進口連接文丘里噴管或錐形進口作為流量測量裝置。
10.2上游風室法
通風機在風室的安裝方式見圖9,這個布置模擬裝置類型A,試驗裝置的上游段應符合GB/T 1236一2017中30.2的規(guī)定。
能夠采用符合GB/T 1236—2017中第23章規(guī)定的弧形或錐形進口確定流量。
11結(jié)果的表示
11.1產(chǎn)品說明
12允差和換算規(guī)則
12.1允差
所列的性能參數(shù)是最可能的參數(shù),不是最大或最小心,射流風機的允差值適用于無外部阻力下運行、按本文件測試的性能。
如表3所示﹐允差用于考慮測量不確定度和倒造w差﹐如果沒有直接試驗結(jié)果時﹐見附錄C。表3注釋所述的影響是針對表3中的大分差值﹐避免復雜的修正過程;另外﹐在某些情況下這些不確定度會使吸收功率的總允差高于表中給出的5%。
12.2換算規(guī)則
附錄A(資料性)標準聲源的圖示與說明
附錄B(資料性)聲壓級的修正
附錄C(資料性)無因次參數(shù)
附錄D(規(guī)范性)基于推力測量的效率
參考文獻